4.7 Article

Genome-Wide Characterization and Evolutionary Analyses of Purple Acid Phosphatase (PAP) Gene Family with Their Expression Profiles in Response to Low Phosphorus Stresses in Moso Bamboo (Phyllostachys edulis)

期刊

FORESTS
卷 12, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/f12030326

关键词

PAP genes; gene expression; phylogenetic relationships; low phosphorus stress; Moso bamboo

类别

资金

  1. Science Foundation for The Excellent Youth Scholars of Fujian Agriculture and Forestry University [KXJQ19015]
  2. Fujian Provincial Colleges and University Engineering Research Center of Sustainable Plantation

向作者/读者索取更多资源

The Moso bamboo PAP gene family consists of 17 genes that can be divided into four categories based on their properties and functions. These genes show varying levels of expression in the roots, stems, and leaves, with most exhibiting higher expression in roots and stems. Under low phosphorus stress, the expression of these genes increases in the roots, stems, and leaves.
Low phosphorus increases acid phosphatase activity and transfers soluble phosphorus from the underground to the above-ground, but also inhibits the growth and development of the Moso bamboo root system. Purple acid phosphatase (PAP), a kind of acid phosphatase, plays an important role in phosphorus (P) uptake and metabolism. In our study of the Moso bamboo PAP gene family, we identified 17 Moso bamboo PAP genes (PePAP) in the entire genome and further analyzed their physical and chemical properties and functions PePAP. According to the analysis of the phylogenetic tree, special domains and conserved motifs, these 17 genes can be divided into four categories. The gene structure and conserved motifs are relatively conservative, but the 17 sequences of the PePAP domain are diverse. The prediction of the subcellular location indicated that PePAPs are mainly located in the secretory pathway. We have studied the expression levels of these PePAP in different organs, such as the roots, stems and leaves of Moso bamboo, and the results show that the expression of most PePAP genes in roots and stems seems to be higher than that in leaves. In addition to tissue-specific expression analysis, we also studied the expression of PePAPs under low phosphorus stress. Under such conditions, the PePAP genes show an increase in expression in the roots, stem and leaves, and the extent of this change varies between genes. In summary, our results reveal the evolution of the PePAP gene in the Moso bamboo genome and provide a basis for understanding the molecular mechanism of the PePAP-mediated response of Moso bamboo to low phosphorus.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据