4.7 Article

Hyperpolarized 13C-glucose magnetic resonance highlights reduced aerobic glycolysis in vivo in infiltrative glioblastoma

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41598-021-85339-7

关键词

-

资金

  1. Swiss National Science Foundation [PP00P2_133562, 31003A_163297, 31003A_138116]
  2. Swiss National Science Foundation (SNF) [31003A_163297, 31003A_138116] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Glioblastoma is the most aggressive brain tumor type in adults, with distinct metabolic profiles observed in recent studies.
Glioblastoma (GBM) is the most aggressive brain tumor type in adults. GBM is heterogeneous, with a compact core lesion surrounded by an invasive tumor front. This front is highly relevant for tumor recurrence but is generally non-detectable using standard imaging techniques. Recent studies demonstrated distinct metabolic profiles of the invasive phenotype in GBM. Magnetic resonance (MR) of hyperpolarized C-13-labeled probes is a rapidly advancing field that provides real-time metabolic information. Here, we applied hyperpolarized C-13-glucose MR to mouse GBM models. Compared to controls, the amount of lactate produced from hyperpolarized glucose was higher in the compact GBM model, consistent with the accepted Warburg effect. However, the opposite response was observed in models reflecting the invasive zone, with less lactate produced than in controls, implying a reduction in aerobic glycolysis. These striking differences could be used to map the metabolic heterogeneity in GBM and to visualize the infiltrative front of GBM.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据