4.8 Article

Sequential cocatalyst decoration on BaTaO2N towards highly-active Z-scheme water splitting

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-021-21284-3

关键词

-

资金

  1. Artificial Photosynthesis Project of the New Energy and Industrial Technology Development Organization (NEDO)
  2. Nanotechnology Platform of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan [JPMXP09A-19-UT-0023]

向作者/读者索取更多资源

The research demonstrates that efficient utilization of cocatalysts on narrow-bandgap photocatalysts can achieve high solar-to-hydrogen energy conversion and Z-scheme water splitting. The key lies in enabling uniform dispersion and intimate contact of cocatalyst nanoparticles on single-crystalline narrow-bandgap particulate photocatalysts.
Oxynitride photocatalysts hold promise for renewable solar hydrogen production via water splitting owing to their intense visible light absorption. Cocatalyst loading is essential for activation of such oxynitride photocatalysts. However, cocatalyst nanoparticles form aggregates and exhibit weak interaction with photocatalysts, which prevents eliciting their intrinsic photocatalytic performance. Here, we demonstrate efficient utilization of photoexcited electrons in a single-crystalline particulate BaTaO2N photocatalyst prepared with the assistance of RbCl flux for H-2 evolution reactions via sequential decoration of Pt cocatalyst by impregnation-reduction followed by site-selective photodeposition. The Pt-loaded BaTaO2N photocatalyst evolves H-2 over 100 times more efficiently than before, with an apparent quantum yield of 6.8% at the wavelength of 420nm, from a methanol aqueous solution, and a solar-to-hydrogen energy conversion efficiency of 0.24% in Z-scheme water splitting. Enabling uniform dispersion and intimate contact of cocatalyst nanoparticles on single-crystalline narrow-bandgap particulate photocatalysts is a key to efficient solar-to-chemical energy conversion. Activation of narrow-bandgap photocatalysts holds key to applicable solar-to-hydrogen energy conversion. Here, the authors demonstrate effective sequential cocatalyst decoration for such narrow-bandgap photocatalysts to realise highly-efficient hydrogen evolution and Z-scheme water splitting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据