4.8 Article

Colloidal CdSe nanocrystals are inherently defective

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-021-21153-z

关键词

-

资金

  1. Department of Energy [DMR-1905164]
  2. National Science Foundation [ACI-1548562, TG-DMR190054]
  3. Technion-MIT fellowship
  4. Technion-New England Foundation
  5. National Science Foundation Graduate Research Fellowship [1122374]

向作者/读者索取更多资源

Using simulations and surface structure analysis, it is found that colloidal CdSe nanocrystals are inherently defective with dark excitations dominating the low energy spectrum, impacting their photophysics significantly.
Colloidal CdSe nanocrystals (NCs) have shown promise in applications ranging from LED displays to medical imaging. Their unique photophysics depend sensitively on the presence or absence of surface defects. Using simulations, we show that CdSe NCs are inherently defective; even for stoichiometric NCs with perfect ligand passivation and no vacancies or defects, we still observe that the low energy spectrum is dominated by dark, surface-associated excitations, which are more numerous in larger NCs. Surface structure analysis shows that the majority of these states involve holes that are localized on two-coordinate Se atoms. As chalcogenide atoms are not passivated by any Lewis base ligand, varying the ligand should not dramatically change the number of dark states, which we confirm by simulating three passivation schemes. Our results have significant implications for understanding CdSe NC photophysics, and suggest that photochemistry and short-range photoinduced charge transfer should be much more facile than previously anticipated. Colloidal CdSe nanocrystals hold great promise in applications due to their tunable optical spectrum. Using hybrid time-dependent density functional theory, the authors show that colloidal CdSe nanocrystals are inherently defective with a low energy spectrum dominated by dark, surface-associated excitations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据