4.4 Article

Adsorption and separation behavior of Pd(II) from simulated high-level liquid waste using N,N,N',N'-tetra-2-ethylhexyl-thiodiglycolamide silica-based adsorbent

期刊

SEPARATION SCIENCE AND TECHNOLOGY
卷 57, 期 1, 页码 48-59

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/01496395.2021.1883653

关键词

Silica-based adsorbent; palladium; simulated high-level liquid waste; column chromatography

向作者/读者索取更多资源

TEHTDGA resin shows high adsorption capacity for Pd(II) under high HNO3 concentrations, with fast adsorption rate, high uptake ratio, temperature insensitivity, and good chemical stability. The chromatography separation experiment demonstrates successful separation and recovery of almost all Pd(II) from simulated HLLW using TEHTDGA resin with thiourea as an eluent.
To efficiently separate Pd(II) from high-level liquid waste (HLLW), a (TEHTDGA + dodecanol)/SiO2-P silica-based adsorbent (TEHTDGA resin) was synthesized by impregnating SiO2-P particles with N,N,N',N'-tetra-2-ethylhexyl-thiodiglycolamide (TEHTDGA) and dodecanol. Our experimental results indicate that TEHTDGA resin exhibits high distribution coefficients for Pd(II) at HNO3 concentrations from 0.1 M to 5.0 M. The adsorption behavior of Pd(II) was found to quickly reach an equilibrium state, with a nearly 100% uptake ratio. Based on adsorption isotherm analyses, the experimental results for Pd(II) fit well with the Langmuir isotherm model. TEHTDGA resin was also confirmed to exhibit high adsorption capacity for Pd(II). The adsorption behavior of Pd(II) was hardly affected by temperature. In an evaluation of the amount of leaked sulfur, TEHTDGA resin demonstrated good chemical stability. The results of a chromatography separation experiment indicate that almost all the Pd(II) could be successfully separated and recovered from simulated HLLW using 0.1 M thiourea in 0.01 M HNO3 solution as an eluent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据