4.7 Article

Dispersal limitation driving phoD-harboring bacterial community assembly: A potential indicator for ecosystem multifunctionality in long-term fertilized soils

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 754, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.141960

关键词

Community assembly; Community composition; Ecosystem multifunctionality; Fertilization treatment; Geographical site; phoD gene

资金

  1. National Natural Science Foundation of China [41830756]
  2. National Key Research and Development Program of China [2018YFE0105600]

向作者/读者索取更多资源

This study elucidated the association between the phoD-harboring bacterial community and soil ecosystem multifunctionality, showing that organic fertilization treatment significantly influenced the community assembly and ecosystem multifunctionality of phoD-harboring bacteria in soils.
Elucidating the association between the phoD-harboring bacterial community and soil ecosystem multifunctionality, which is crucial for the comprehension of the phoD-harboring bacterial role and contribution in agro-ecosystems, is an essential but rarely investigated subject. Here, we explored the phoD-harboring bacterial community in long-term fertilized soils using amplicon sequencing and multiple analysis methods including the null, neutral, and niche breadth models. We found distance-decay relationships of community similarities against geographical distance on a large spatial scale. Community dissimilarity was significantly lower in the organic fertilization treatment (M) than that in the no (CK) and mineral (NPK) fertilizer treatments. Dispersal limitation governed community assembly in CK, M, NPK, and whole samples, with corresponding relative contributions of 58.2%, 58.3%, 52.8%, and 54.4%, respectively. Electrical conductivity, total carbon, total nitrogen, total phosphorus, organic phosphorus, and available phosphorus were responsible for the community assembly of phoD-harboring bacteria. Multiple model analysis revealed that the phoD-harboring bacterial community was less constrained by the environment and presented flexible metabolism in soils with the M fertilization treatment. phoD-harboring bacteria presented more conflicting interaction and exhibited significantly higher ecosystem multifunctionality in soils with the M fertilization treatment than that in the CK and NPK fertilization treatments. To our knowledge, this is the first study to report a less environment-constrained phoD-harboring bacterial community might lead to a larger difference in ecosystem multifunctionality in fertilized soils. Therefore, we suggest phoD-harboring bacterial community assembly could be a biotic indicator for evaluating soil ecosystem multifunctionality. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据