4.5 Article

Spatiotemporal redox dynamics in a freshwater lake sediment under alternating oxygen availabilities: combined analyses of dissolved and particulate electron acceptors

期刊

ENVIRONMENTAL CHEMISTRY
卷 13, 期 5, 页码 826-837

出版社

CSIRO PUBLISHING
DOI: 10.1071/EN15217

关键词

-

资金

  1. Leibniz Association [SAW-2012-IGB-4167]

向作者/读者索取更多资源

Benthic mineralisation in lakes largely controls the availability of oxygen in the water column above the sediment. In stratified lakes with anoxic hypolimnetic waters, mineralisation proceeds by anaerobic respiration using terminal electron acceptors (TEAs) other than O-2. In past work, hypolimnetic oxygen consumption has been estimated from vertical concentration profiles of redox-active dissolved species in the water column and the underlying sediment. Electron transfer to and from particulate mineral and organic phases in the sediments was, however, not accounted for, mainly because of methodological constraints. In this work we use an electrochemical approach, mediated electrochemical analysis, to directly quantify changes in the redox states of particulate geochemical phases in a lake sediment. In mesocosm incubations, sediments were subjected to shifting oxygen availability similar to conditions during and after lake overturn events. The temporal redox dynamics of both dissolved and particulate phases in sediments were monitored at a high spatial resolution. We used a combination of experimental and modelling approaches to couple the observed changes in the redox state of dissolved and particulate species in the sediment to the oxygen turnover in the overlying water column. For the studied freshwater sediment, the amount of O-2 consumed during the re-oxidation of these phases in the top 21 mm of the sediment after switching from hypoxic to oxic conditions corresponded to similar to 50% of the total sediment oxygen consumption that was estimated from in-lake measurements after the onset of summer stratification. We found that solid phases in the sediments play a more profound role in electron accepting processes than previously considered. Based on these results, we propose that the herein presented analytical method offers the possibility to constrain parameters in theoretical models that simulate benthic redox dynamics including the electron transfer to and from geochemical phases in the sediments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据