4.7 Article

Magnetic graphene oxide as a platform for the immobilization of cellulases and xylanases: Ultrastructural characterization and assessment of lignocellulosic biomass hydrolysis

期刊

RENEWABLE ENERGY
卷 164, 期 -, 页码 491-501

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2020.09.059

关键词

Enzyme immobilization; Graphene oxide; Magnetic nanoparticles; Biocatalyst; Sugarcane bagasse hydrolysis; Monomeric fermentable sugars

资金

  1. Sao Paulo State Research Support Foundation (FAPESP) [2018/06241e3]
  2. Coordination of Improvement of Higher Education Personnel (CAPES)
  3. MCIU/AEI/FEDER,UE [PGC2018-097277-B-100]
  4. Severo Ochoa Program [SEV-2016-0683]

向作者/读者索取更多资源

Magnetic graphene oxide (GO-MNP) was synthesized and used as the immobilization support for an industrial cellulase-and xylanase-containing preparation, showing high activity for the hydrolysis of pretreated sugarcane bagasse after 10 cycles. The supported biocatalyst may be a prospective candidate for industrial applications like second-generation ethanol production.
For producing second-generation ethanol (cellulosic ethanol) and other value-added bioproducts, magnetic graphene oxide (GO-MNP) was synthesized in this work and used as the immobilization support for an industrial cellulase-and xylanase-containing preparation. GO-MNP characterization by TEM, SEM and ATR-FTIR spectroscopy showed that the magnetic nanoparticles are homogeneously distributed onto the GO sheets surface. The enzymatic preparation was immobilized by means of carbodiimide cross-linking chemistry using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (NHS). The supported final biocatalyst (GO-MNP-Enz) showed high activity for the hydrolysis of pretreated sugarcane bagasse (PSB) and presented relative endoglucanase, xylanase, beta-glucosidase, and beta-xylosidase activities of 70%, 66%, 88%, and 70%, respectively, after 10 cycles of hydrolysis of their respective substrates. The biocatalyst also maintained approximately 50% and 80% of its efficiency for cellulose and xylan hydrolysis, respectively, being the TOF (g.g(-1).h(-1)) the highest observed when compared with previous results reported in literature. These findings suggest that GO-MNP-Enz may be a prospective candidate for industrial applications such as second-generation ethanol production. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Engineering, Chemical

Hydrothermal pretreatment of Eucalyptus by-product and refining of xylooligosaccharides from hemicellulosic hydrolysate

Cecilia Aline Otaviano, Cassamo Ussemane Mussagy, Fernando Roberto Paz-Cedeno, Jorge Fernando Branda Pereira, Fernando Masarin

Summary: This study aimed to refine XOS-rich hemicellulosic hydrolysate (HH) obtained from Eucalyptus by-product using liquid-liquid extraction and vacuum evaporation. Both processes were efficient in removing unwanted components, especially aromatics contaminants.

SEPARATION AND PURIFICATION TECHNOLOGY (2023)

Article Chemistry, Multidisciplinary

Self-assembly of 2D-electrolytes into heterostructured nanofibers

H. L. Tan, P. R. Ng, M. Trushin, G. K. W. Koon, K. Z. Donato, M. C. F. Costa, R. K. Donato, A. H. Castro Neto

Summary: 2D materials can be functionalised with ionisable functional groups to form 2D electrolytes. In this study, heterostructures were formed by self-assembly of functionalised graphene oxide (GO) with cationic groups and molybdenum disulfide (MoS2) with anionic groups. The application of sonication allowed the continuous assembly of the 2D materials into heterostructured nanofibers, which resemble naturally occurring polyelectrolytes. This method offers a facile approach for the continuous processing of low-cost heterostructured nanofibers with potential applications in various fields.

MATERIALS TODAY CHEMISTRY (2023)

Article Chemistry, Physical

Colossal enhancement of electrical and mechanical properties of graphene nanoscrolls

Mariana C. F. Costa, Pei Rou Ng, Sergey Grebenchuck, Jun You Tan, Gavin K. W. Koon, Hui Li Tan, Colin R. Woods, Ricardo K. Donato, Kostya S. Novoselov, Antonio H. Castro Neto

Summary: One of the important characteristics of 2D electrolytes is their ability to transform into 1D structures like nanoscrolls. However, these 1D structures are soft, unstable, and have poor electrical conductivity. Through the use of atomic force microscopy and electrical transport measurements, researchers have found that one-step, catalyst-free graphitization of graphene nanoscrolls enhances their structural stability and reduces their structural disorder. These changes in physical properties open up possibilities for the study of exotic materials and various industrial applications.

CARBON (2023)

Article Chemistry, Applied

Minimizing rare earth content of FCC catalysts: Understanding the fundamentals on combined P-La stabilization

Cristina Martinez, Alejandro Vidal-Moya, Bilge Yilmaz, C. P. Kelkar, Avelino Corma

Summary: Fluidized Catalytic cracking (FCC) is a main conversion process in refineries, using Y zeolite as the main source of activity and selectivity. A new Y zeolite catalyst, Phinesse(TM), based on partial substitution of RE by P, has been developed and shown to have similar performance to the conventional RE stabilized counterpart. The hydrothermal stability of different USYs with different dealumination degrees, containing P or La alone or a combination of both stabilizing elements, was compared. The results provide insights into the benefits of P-La stabilization observed in the commercial PhinesseTM catalyst.

CATALYSIS TODAY (2023)

Review Chemistry, Multidisciplinary

Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles

Lichen Liu, Avelino Corma

Summary: This review discusses the structure, synthesis, and catalytic applications of heterogeneous bimetallic catalysts, including binuclear sites, nanoclusters, and nanoparticles. Recent progress in the field of bimetallic catalysts is highlighted, along with the future research directions and prospects in both fundamental and practical aspects of heterogeneous catalysis.

CHEMICAL REVIEWS (2023)

Article Multidisciplinary Sciences

Approaching enzymatic catalysis with zeolites or how to select one reaction mechanism competing with others

Pau Ferri, Chengeng Li, Daniel Schwalbe-Koda, Mingrou Xie, Manuel Moliner, Rafael Gomez-Bombarelli, Mercedes Boronat, Avelino Corma

Summary: Approaching the level of molecular recognition of enzymes with solid catalysts is a challenging goal, achieved in this work for the competing transalkylation and disproportionation of diethylbenzene catalyzed by acid zeolites. The key diaryl intermediates for the two competing reactions only differ in the number of ethyl substituents in the aromatic rings, and therefore finding a selective zeolite able to recognize this subtle difference requires an accurate balance of the stabilization of reaction intermediates and transition states inside the zeolite microporous voids.

NATURE COMMUNICATIONS (2023)

Article Chemistry, Multidisciplinary

Encapsulation of Palladium Carbide Subnanometric Species in Zeolite Boosts Highly Selective Semihydrogenation of Alkynes

Risheng Bai, Guangyuan He, Lin Li, Tianjun Zhang, Junyan Li, Xingxing Wang, Xiumei Wang, Yongcun Zou, Donghai Mei, Avelino Corma, Jihong Yu

Summary: In this work, a carbonization-reduction method was used to create palladium carbide subnanometric species within pure silicate MFI zeolite. The developed catalyst showed superior performance in the selective hydrogenation of alkynes.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Physical

From Well-Defined Clusters to Functional Materials: Molecular Engineering of Amorphous Molybdenum Sulfides for Hydrogen Evolution Electrocatalysis

Francisco Gonell, Miriam Rodenes, Santiago Martin, Mercedes Boronat, Ivan Sorribes, Avelino Corma

Summary: Developing precious-metal-free electrocatalysts for the hydrogen evolution reaction (HER) is crucial. Amorphous molybdenum sulfide-based materials provide highly active HER electrocatalysts by introducing active sites at both the edge positions and the typically inactive basal planes. The bottom-up synthesis using molecular complexes with Mo3S4 and Mo3S7 cluster cores enhances the HER activity and allows the modification of the derived materials with atomic-scale precision.

CHEMISTRY OF MATERIALS (2023)

Article Biochemistry & Molecular Biology

Solvent-Free Enzymatic Synthesis of Dietary Triacylglycerols from Cottonseed Oil in a Fluidized Bed Reactor

Daniela Remonatto, Nubia Santaella, Lindomar Alberto Lerin, Juliana Cristina Bassan, Marcel Otavio Cerri, Ariela Veloso de Paula

Summary: This study aimed to synthesize medium-long-medium (MLM) triacylglycerols with nutraceutical applications through enzymatic acidolysis in a fluidized bed reactor. The optimal conditions were found to be a 1:4 oil/acid molar ratio and 80 cycles, resulting in a degree of incorporation of about 40 mol%.

MOLECULES (2023)

Article Chemistry, Multidisciplinary

Multifunctional Catalysis of Nanosheet Defective Molybdenum Sulfide Basal Planes for Tandem Reactions Involving Alcohols and Molecular Hydrogen

Miriam Rodenes, Frederic Dhaeyere, Santiago Martin, Patricia Concepcion, Avelino Corma, Ivan Sorribes

Summary: A defect-engineered molybdenum sulfide catalyst is used to establish straightforward synthetic processes using alcohols. Developing tandem catalytic strategies based on readily available, stable, and renewable feedstocks is crucial for sustainable chemical industries. The catalyst, defect-engineered basal planes of a molybdenum sulfide nanomaterial ({Mo3S4}( n )), enables one-pot single-step synthesis and facilitates various coupling reactions involving alcohol dehydrogenation and hydrogen activation processes.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2023)

Article Biotechnology & Applied Microbiology

Synthesis of dietary lipids from pumpkin (Cucurbita pepo. L) oil obtained by enzymatic extraction: a sustainable approach

Abra Eli Atsakou, Daniela Remonatto, Rodney Helder Miotti Junior, Fernando Roberto Paz-Cedeno, Fernando Masarin, Grazielle Santos Silva Andrade, Edwil Aparecida de Lucca Gattas, Ariela Veloso de Paula

Summary: This study aimed to assess the nutritional properties of dietary lipids obtained through the modification of aqueous enzymatically extracted pumpkin seed oil. The study found that the optimized extraction conditions resulted in a high amount of unsaturated fatty acids and the nutritional properties of the oil were improved through enzymatic acidolysis.

3 BIOTECH (2023)

Article Chemistry, Multidisciplinary

Process development and techno-economic analysis of co- production of colorants and enzymes valuing agro-industrial citrus waste

Caio A. Lima, Heitor B. S. Bento, Flavio P. Picheli, Fernando R. Paz-Cedeno, Cassamo U. Mussagy, Fernando Masarin, Mario A. Torres Acosta, Valeria C. Santos-Ebinuma

Summary: This study explores the potential of citrus by-product (CB) as a carbon source for the synthesis of red colorants (RC) and enzymes by the filamentous fungi Talaromyces amestolkiae. The microorganism metabolizes the sugars in CB to produce RC and enzymes, including endo-glucanases, xylanase, and β-glucosidase. Although further improvements are needed for economic viability, the results show promise for the production of high commercial value commodities using citrus waste.

SUSTAINABLE CHEMISTRY AND PHARMACY (2023)

Review Chemistry, Multidisciplinary

Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles

Lichen Liu, Avelino Corma

Summary: Heterogeneous bimetallic catalysts are widely used in industrial processes, but understanding the active sites in these catalysts at the atomic and molecular level is challenging due to their structural complexity. Comparing the structural features and catalytic performances of different bimetallic entities can aid in developing a unified understanding of the structure-reactivity relationships and improving current bimetallic catalysts. This review discusses the geometric and electronic structures of three representative types of bimetallic catalysts, as well as the synthesis methods, characterization techniques, and catalytic applications of these catalysts.

CHEMICAL REVIEWS (2023)

Article Chemistry, Physical

Titanium-rich TS-1 zeolite for highly efficient oxidative desulfurization

Risheng Bai, Yue Song, Ge Tian, Fei Wang, Avelino Corma, Jihong Yu

Summary: The synthesis of highly efficient nano-sized Ti-rich TS-1 zeolites with controllable titanium species is crucial in zeolite catalytic reactions. A new method was developed using tetrabutyl orthotitanate tetramer as the titanium source, which slowed down the zeolite crystallization process and prevented the formation of anatase species. The Ti-rich TS-1 zeolite prepared with this method exhibited enriched active titanium species, enlarged external surface area, and superior catalytic performance in oxidative desulfurization reactions.

GREEN ENERGY & ENVIRONMENT (2023)

Review Chemistry, Multidisciplinary

Advanced zeolite and ordered mesoporous silica-based catalysts for the conversion of CO2 to chemicals and fuels

Alexandra Velty, Avelino Corma

Summary: For many years, capturing, storing or sequestering CO2 from emission sources has been an effective method for reducing atmospheric CO2. The chemical conversion of CO2 into valuable chemicals has gained much attention due to CO2's abundance and renewable nature. Catalysts, particularly zeolite and ordered mesoporous materials, play a critical role in the conversion of CO2. By studying the reactions involving these catalysts, this review aims to explore the potential opportunities for using them to convert CO2 into essential chemicals and fuels.

CHEMICAL SOCIETY REVIEWS (2023)

Article Green & Sustainable Science & Technology

Standardized benchmark of historical compound wind and solar energy droughts across the Continental United States

Cameron Bracken, Nathalie Voisin, Casey D. Burleyson, Allison M. Campbell, Z. Jason Hou, Daniel Broman

Summary: This study presents a methodology and dataset for examining compound wind and solar energy droughts, as well as the first standardized benchmark of energy droughts across the Continental United States (CONUS) for a 2020 infrastructure. The results show that compound wind and solar droughts have distinct spatial and temporal patterns across the CONUS, and the characteristics of energy droughts are regional. The study also finds that compound high load events occur more often during compound wind and solar droughts than expected.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Optimal configuration of concentrating solar power generation in power system with high share of renewable energy resources

Ning Zhang, Yanghao Yu, Jiawei Wu, Ershun Du, Shuming Zhang, Jinyu Xiao

Summary: This paper provides insights into the optimal configuration of CSP plants with different penetrations of wind power by proposing an unconstrained optimization model. The results suggest that large solar multiples and TES are preferred in order to maximize profit, especially when combined with high penetrations of wind and photovoltaic plants. Additionally, the study demonstrates the economy and feasibility of installing electric heaters (EH) in CSP plants, which show a linear correlation with the penetration of variable energy resources.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Impact of the air supply system configuration on the straw combustion in small scale batch-boiler- experimental and numerical studies

M. Szubel, K. Papis-Fraczek, S. Podlasek

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Biomethane production from biogas obtained in wastewater treatment plants: Process optimization and economic analysis

J. Silva, J. C. Goncalves, C. Rocha, J. Vilaca, L. M. Madeira

Summary: This study investigated the methanation of CO2 in biogas and compared two different methanation reactors. The results showed that the cooled reactor without CO2 separation achieved a CO2 conversion rate of 91.8%, while the adiabatic reactors achieved conversion rates of 59.6% and 67.2%, resulting in an overall conversion rate of 93.0%. Economic analysis revealed negative net present worth values, indicating the need for government monetary incentives.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Composite nanofiber membranes to enhance the performance of high solids anaerobic digestion of organic rural household waste resources

Yang Liu, Yonglan Xi, Xiaomei Ye, Yingpeng Zhang, Chengcheng Wang, Zhaoyan Jia, Chunhui Cao, Ting Han, Jing Du, Xiangping Kong, Zhongbing Chen

Summary: This study investigated the effect of using nanofiber membrane composites containing Prussian blue-like compound nanoparticles (PNPs) to relieve ammonia nitrogen inhibition of rural organic household waste during high-solid anaerobic digestion and increase methane production. The results showed that adding NMCs with 15% PNPs can lower the concentrations of volatile fatty acids and ammonia nitrogen, and increase methane yield.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Thermodynamic and economic performance evaluations of double-stage organic flash cycle using hydrofluoroolefins (HFOs)

Zhong Ge, Xiaodong Wang, Jian Li, Jian Xu, Jianbin Xie, Zhiyong Xie, Ruiqu Ma

Summary: This study evaluates the thermodynamic, exergy, and economic performance of a double-stage organic flash cycle (DOFC) using ten eco-friendly hydrofluoroolefins. The influences of key parameters on performance are analyzed, and the advantages of DOFC over single-stage type are quantified.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Wind farm power density optimization according to the area size using a novel self-adaptive genetic algorithm

Nicolas Kirchner-Bossi, Fernando Porte-Agel

Summary: This study investigates the optimization of power density in wind farms and its sensitivity to the available area size. A novel genetic algorithm (PDGA) is introduced to optimize power density and turbine layout. The results show that the PDGA-driven solutions significantly reduce the levelized cost of energy (LCOE) compared to the default layout, and exhibit a convex relationship between area and LCOE or power density.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Experimental investigation of indoor lighting/thermal environment of liquid-filled energy-saving windows

Chunxiao Zhang, Dongdong Li, Lin Wang, Qingpo Yang, Yutao Guo, Wei Zhang, Chao Shen, Jihong Pu

Summary: In this study, a novel reversible liquid-filled energy-saving window that effectively regulates indoor solar radiation heat gain is proposed. Experimental results show that this window can effectively reduce indoor temperature during both summer and winter seasons, while having minimal impact on indoor illuminance.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Numerical assessment of tidal potential energy in the Brazilian Equatorial Shelf

Alessandro L. Aguiar, Martinho Marta-Almeida, Mauro Cirano, Janini Pereira, Leticia Cotrim da Cunha

Summary: This study analyzed the Brazilian Equatorial Shelf using a high-resolution ocean model and found significant tidal variations in the area. Several hypothetical barrages were proposed with higher annual power generation than existing barrages. The study also evaluated the installation effort of these barrages.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Optimization of the power output scheduling of a renewables-based hybrid power station using MILP approach: The case of Tilos island

Francesco Superchi, Nathan Giovannini, Antonis Moustakis, George Pechlivanoglou, Alessandro Bianchini

Summary: This study focuses on the optimization of a hybrid power station on the Tilos island in Greece, aiming to increase energy export and revenue by optimizing energy fluxes. Different scenarios are proposed to examine the impact of different agreements with the grid operator on the optimal solution.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Comparison of control strategies for efficient thermal energy storage to decarbonize residential buildings in cold climates: A focus on solar and biomass sources

Peimaneh Shirazi, Amirmohammad Behzadi, Pouria Ahmadi, Sasan Sadrizadeh

Summary: This research presents two novel energy production/storage/usage systems to reduce energy consumption and environmental effects in buildings. A biomass-fired model and a solar-driven system integrated with photovoltaic thermal (PVT) panels and a heat pump were designed and assessed. The results indicate that the solar-based system has an acceptable energy cost and the PVT-based system with a heat pump is environmentally superior. The biomass-fired system shows excellent efficiency.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Study on optimization of winter operation characteristics of solar-ground source heat pump in Shanghai

Zihao Qi, Yingling Cai, Yunxiang Cui

Summary: This study aims to investigate the operational characteristics of the solar-ground source heat pump system (SGSHPS) in Shanghai under different operation modes. It concludes that tandem operation mode 1 is the optimal mode for winter operation in terms of energy efficiency.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Platform chemicals recovery from spent coffee grounds aqueous-phase pyrolysis oil

L. Bartolucci, S. Cordiner, A. Di Carlo, A. Gallifuoco, P. Mele, V. Mulone

Summary: Spent coffee grounds are a valuable biogenic waste that can be used as a source of biofuels and valuable chemicals through pyrolysis and solvent extraction processes. The study found that heavy organic bio-oil derived from coffee grounds can be used as a carbon-rich biofuel, while solvent extraction can extract xantines and p-benzoquinone, which are important chemicals for various industries. The results highlight the promising potential of solvent extraction in improving the economic viability of coffee grounds pyrolysis-based biorefineries.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Evaluating energy generation of a building-integrated organic photovoltaic vertical façade: A case study of Latin America's pioneering installation

Luiza de Queiroz Correa, Diego Bagnis, Pedro Rabelo Melo Franco, Esly Ferreira da Costa Junior, Andrea Oliveira Souza da Costa

Summary: Building-integrated photovoltaics, especially organic solar technology, are important for reducing greenhouse gas emissions in the building sector. This study analyzed the performance of organic panels laminated in glass in a vertical installation in Latin America. Results showed that glass lamination and vertical orientation preserved the panels' performance and led to higher energy generation in winter.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Numerical simulation of fin arrangements on the melting process of PCM in a rectangular unit

Zhipei Hu, Shuo Jiang, Zhigao Sun, Jun Li

Summary: This study proposes innovative fin arrangements to enhance the thermal performance of latent heat storage units. Through optimization of fin distribution and prediction of transient melting behaviors, it is found that fin structures significantly influence heat transfer characteristics and melting behaviors.

RENEWABLE ENERGY (2024)