4.5 Editorial Material

Challenges and outlook for convection-permitting climate modelling

出版社

ROYAL SOC
DOI: 10.1098/rsta.2019.0547

关键词

climate change; convection permitting; regional climate modelling; extreme weather

资金

  1. Joint UK BEIS/Defra Met Office Hadley Centre Climate Programme [GA01101]
  2. National Science Foundation

向作者/读者索取更多资源

Climate projections at very high resolution, such as 'convection-permitting' models, offer significant advancements in understanding future changes and extreme weather events. However, challenges remain, including intense heavy rainfall and representation of land-surface processes. Despite these challenges, significant progress is expected in the coming years.
Climate projections at very high resolution (kilometre-scale grid spacing) are becoming affordable. These 'convection-permitting' models (CPMs), commonly used for weather forecasting, better represent land-surface characteristics and small-scale processes in the atmosphere such as convection. They provide a step change in our understanding of future changes at local scales and for extreme weather events. For short-duration precipitation extremes, this includes capturing local storm feedbacks, which may modify future increases. Despite the major advance CPMs offer, there are still key challenges and outstanding science issues. Heavy rainfall tends to be too intense; there are challenges in representing land-surface processes; sub-kilometre scale processes still need to be parametrized, with existing parametrization schemes often requiring development for use in CPMs; CPMs rely on the quality of lateral boundary forcing and typically do not include ocean-coupling; large CPM ensembles that comprehensively sample future uncertainties are costly. Significant progress is expected over the next few years: scale-aware schemes may improve the representation of unresolved convective updrafts; work is underway to improve the modelling of complex land-surface fluxes; CPM ensemble experiments are underway and methods to synthesize this information with larger coarser-resolution model ensembles will lead to local-scale predictions with more comprehensive uncertainty context for user application. Large-domain (continental or tropics-wide) CPM climate simulations, potentially with additional earth-system processes such as ocean and wave coupling and terrestrial hydrology, are an exciting prospect, allowing not just improved representation of local processes but also of remote teleconnections. This article is part of a discussion meeting issue 'Intensification of short-duration rainfall extremes and implications for flash flood risks'.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据