4.3 Article

Pool-less processing to streamline downstream purification of monoclonal antibodies

期刊

ENGINEERING IN LIFE SCIENCES
卷 17, 期 2, 页码 117-124

出版社

WILEY
DOI: 10.1002/elsc.201600104

关键词

Continuous processing; Connected processing; Monoclonal antibodies; Pool-less; processing; Process development

向作者/读者索取更多资源

With cell culture titers and productivity increasing in the last few years, pressure has been placed on downstream purification to look at alternative strategies to meet the demand of biotech products with high dose requirements. Even when the upstream process is not continuous (perfusion based), adopting a more productive and/ or continuous downstream process can be of significant advantage. Due to the recent trend in exploring continuous processing options for biomolecules, several enabling technologies have been assessed at Biogen. In this paper, we evaluate the capability of one of these technologies to streamline and improve our downstream mAb purification platform. Current conventional downstream polishing steps at Biogen are operated in flow-through mode to achieve higher loadings while maintaining good selectivity. As titers increase, this would result in larger columns and larger intermediate product pool holding tanks. A semicontinuous downstream process linking the second and third chromatography steps in tandem can reduce/eliminate intermediate holding tanks, reduce overall processing time, and combine unit operations to reduce validation burdens. A pool-less processing technology utilizing inline adjustment functionality was evaluated to address facility fit challenges for three high titer mAbs. Two different configurations of polishing steps were examined: (i) anion exchange and hydrophobic interaction and (ii) anion exchange and mixed mode chromatography. Initial laboratory scale proof of concept studies showed comparable performance between the batch purification process and the pool- less process configuration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据