4.8 Article

Robust decomposition of cell type mixtures in spatial transcriptomics

期刊

NATURE BIOTECHNOLOGY
卷 40, 期 4, 页码 517-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41587-021-00830-w

关键词

-

资金

  1. Projekt DEAL

向作者/读者索取更多资源

RCTD is a computational method that leverages cell type profiles learned from single-cell RNA-seq to decompose cell type mixtures and correct for differences across sequencing technologies. It successfully detects mixtures, identifies cell types, and reproduces cell type localization patterns in simulated datasets and mouse brain data. By enabling spatial mapping of cell types, RCTD defines the spatial components of cellular identity and uncovers new principles of cellular organization in biological tissues.
A limitation of spatial transcriptomics technologies is that individual measurements may contain contributions from multiple cells, hindering the discovery of cell-type-specific spatial patterns of localization and expression. Here, we develop robust cell type decomposition (RCTD), a computational method that leverages cell type profiles learned from single-cell RNA-seq to decompose cell type mixtures while correcting for differences across sequencing technologies. We demonstrate the ability of RCTD to detect mixtures and identify cell types on simulated datasets. Furthermore, RCTD accurately reproduces known cell type and subtype localization patterns in Slide-seq and Visium datasets of the mouse brain. Finally, we show how RCTD's recovery of cell type localization enables the discovery of genes within a cell type whose expression depends on spatial environment. Spatial mapping of cell types with RCTD enables the spatial components of cellular identity to be defined, uncovering new principles of cellular organization in biological tissue. RCTD is publicly available as an open-source R package at https:// github.com/dmcable/RCTD..

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据