4.7 Article

SPH-FDM propagation and pore water pressure modelling for debris flows in flume tests

期刊

ENGINEERING GEOLOGY
卷 213, 期 -, 页码 74-83

出版社

ELSEVIER
DOI: 10.1016/j.enggeo.2016.08.007

关键词

Debris flow; Flume tests; SPH; FDM; Pore water pressure; Propagation; Rack

向作者/读者索取更多资源

Debris flows are dangerous phenomena due to their large run-out distances and high velocities. The time-space evolution of the interstitial pore water pressures much affects the propagation stage of debris flows. Thus, a quantitative physically-based combined modelling of both flow propagation and pore water pressure changes is a fundamental issue for landslide risk analysis and to design effective control works. The paper provides a contribution to this topic through the use of an enhanced numerical model, which combines a 3D depth-integrated hydro-mechanical coupled SPH (Smooth Particles Hydrodynamics) model for the propagation analysis and a 1D vertical FDM (Finite Difference Method) model for the evaluation of the pore water pressure along the height of the flowing mass. In this paper, the SPH-FDM model is used to simulate, in 2D and 3D analyses, well-documented flume tests performed in USA through a 90 m long channel exiting at a sub-horizontal pad. The model is later used to simulate other flume tests, performed in Japan in a 3.4 m long channel, equipped without or with a (permeable) rack at the end of the channel, which allows the pore water pressures reducing until the mass eventually stops. Doing so, the paper shows that the SPH-FDM model is capable to properly reproduce the time-space evolution of the pore water pressures during the propagation stage with different geometries of experimental flumes and different hydraulic boundary conditions, such as an impervious or permeable bottom. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据