4.8 Article

DNA-Engineerable Ultraflat-Faceted Core-Shell Nanocuboids with Strong, Quantitative Plasmon-Enhanced Fluorescence Signals for Sensitive, Reliable MicroRNA Detections

期刊

NANO LETTERS
卷 21, 期 5, 页码 2132-2140

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.0c04883

关键词

plasmon-enhanced fluorescence; surface-enhanced fluorescence; metal-enhanced fluorescence; biosensors; fluorescence nanoprobes; microarray-based microRNA detection

资金

  1. BioNano Health-Guard Research Center - Ministry of Science and ICT (MSIT) of Korea as Global Frontier Project [H-GUARD_2013-M3A6B2078947]
  2. National Research Foundation of Korea (NRF) - Korean government (MIST) [NRF-2017R1A5A1015365]
  3. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT, and Future Planning [2017R1A2B3008478]
  4. National Research Foundation of Korea [4120200213576, 4199990214002, 2017R1A2B3008478] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

The study focuses on designing and synthesizing fluorescence-amplified nanocuboids (FANCs) with highly enhanced and controlled plasmon-enhanced fluorescence (PEF) signals, as well as fluorescent silica shell-coated FANCs (FS-FANCs) for biosensing applications. By modifying DNA labeled Au nanorods and forming ultraflat Ag shells, the authors achieved a significant fluorescence enhancement factor and high sensitivity for miRNA detection.
There has been enormous interest in understanding and utilizing plasmon-enhanced fluorescence (PEF) with metal nanostructures, but maximizing the enhancement in a reproducible, quantitative manner while reliably controlling the distance between dyes and metal particle surface for practical applications is highly challenging. Here, we designed and synthesized fluorescence-amplified nanocuboids (FANCs) with highly enhanced and controlled PEF signals, and fluorescent silica shell-coated FANCs (FS-FANCs) were then formed to fixate the dye position and increase particle stability and fluorescence signal intensity for biosensing applications. By uniformly modifying fluorescently labeled DNA on Au nanorods and forming ultraflat Ag shells on them, we were able to reliably control the distance between fluorophores and Ag surface and obtained an similar to 186 fluorescence enhancement factor with these FANCs. Importantly, FS-FANCs were utilized as fluorescent nanoparticle tags for microarray-based miRNA detection, and we achieved >10(3)-fold higher sensitivity than commercially available chemical fluorophores with 100 aM to 1 pM dynamic range.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据