4.8 Article

Tuning p-Si(111) Photovoltage via Molecule|Semiconductor Electronic Coupling

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 143, 期 6, 页码 2567-2580

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.0c12075

关键词

-

资金

  1. W.M. Keck Foundation [22605]
  2. Welch Foundation [F-1822]
  3. National Science Foundation [OISE-1545907]
  4. National Science Foundation (NSF) [MRI-0618242]

向作者/读者索取更多资源

The efficiency of photoelectrochemical (PEC) devices depends heavily on the energetics and band alignment of the semiconductor overlayer junction, which can be controlled through molecular functionalization. By covalently attaching aryl surface modifiers, high-fidelity surfaces with low defect densities were achieved, resulting in systematically shifted band edges and high photoelectrochemical performance. DFT calculations showed that the organic-functionalized interfaces effectively hybridized with the silicon band edges, introducing a positive interfacial dipole and decreasing the potential drop across the semiconductor.
Photoelectrochemical (PEC) device efficiency depends heavily on the energetics and band alignment of the semiconductor vertical bar overlayer junction. Exerting energetic control over these junctions via molecular functionalization is an extremely attractive strategy. Herein we report a study of the structure-function relationship between chemically functionalized pSi(111) and the resulting solar fuels performance. Specifically, we highlight the interplay of chemical structure and electronic coupling between the attached molecule and the underlying semiconductor. Covalent attachment of aryl surface modifiers (phenyl, Ph; nitrophenyl, PhNO2; anthracene, Anth; and nitroanthracene, AnthNO(2)) resulted in high-fidelity surfaces with low defect densities (S < 50 cm/s). Electrochemical characterization of these surfaces in contact with methyl viologen resulted in systematically shifted band edges (up to 0.99 V barrier height) and correspondingly high photoelectrochemical performance (V-oc up to 0.43 V vs MV2+) consistent with the introduction of a positive interfacial dipole. We extend this functionalization to HER conditions and demonstrate systematic tuning of the HER V-oc using pSi(111)-RITiO2 vertical bar Pt architecture. Correlation of the shifts in barrier height with the photovoltage provides evidence for nonideality despite low surface recombination. Critically, DFT calculations of the electronic structure of the organic-functionalized interfaces show that the molecule-based electronic states effectively hybridized with the silicon band edges. A comparison of these interfacial states with their isolated molecular analogues further confirms electronic coupling between the attached molecule and the underlying semiconductor, providing an induced density of interfacial states (IDIS) which decreases the potential drop across the semiconductor. These results demonstrate the delicate interplay between interfacial chemical structure, interfacial dipole, and electronic structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据