4.7 Article

Effect of back cavity configuration on performance of elastic panel acoustic liner with grazing flow

期刊

JOURNAL OF SOUND AND VIBRATION
卷 492, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2020.115847

关键词

Acoustic liner; Elastic panel; Cavity; Transmission loss; Duct aeroacoustics; Direct aeroacoustic simulation

资金

  1. Research Grants Council of the Government of Hong Kong Special Administrative Region [A-PolyU503/15]
  2. ANR/UGC international FlowMatAc [ANR15-CE22-0016-01]
  3. Philip K. H. Wong Foundation [5-ZH1X]

向作者/读者索取更多资源

This paper presents a comprehensive numerical study on the noise mitigation performance of an elastic panel liner in low Mach number grazing flow. It was found that the back cavity configuration plays an important role in the liner problem, and a new configuration with acoustic absorption materials on the cavity wall was proposed for enhanced mitigation performance.
This paper reports a comprehensive numerical study of noise mitigation performance of elastic panel liner comprising an elastic panel and a cavity beneath exposed to low Mach number grazing flow. A time-domain direct aeroacoustic simulation (DAS) seamlessly coupled with panel dynamics is adopted for its least assumptions taken on duct flow unsteadiness and acoustical behaviors so that both linear and nonlinear aeroacoustic-structural interactions of the problem can be fully explored. The numerical method is well validated with theoretical and experimental works on a liner with thick cavity reported in literature. The noise mitigation of liner with various combinations of cavity depth, panel length and cavity shape, are explored and the present numerical results show that back cavity configuration plays an important role in the liner problem. A decomposition method is applied to DAS acoustic solutions for uncovering the role of aeroacoustically induced panel vibration. The nonlinear effect due to aeroacoustic-structural interaction is found to be of secondary importance. Extensive cross spectral analyses between duct aeroacoustics and panel vibration reveal that the overall liner performance is largely determined by the liner elastic panel whose aeroacoustic and vibration responses are greatly modified by the variations of back cavity acoustics of the back cavity with different shapes. Based on these understandings a new configuration with acoustic absorption materials placed on a cavity wall is proposed. Detailed analysis of its numerical results shows that the introduction of acoustic absorption effectively relieves the cavity acoustics and modifies the panel responses in such a way that an enhanced liner mitigation performance over a broadband can be achieved. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据