4.6 Article

Effects of HSP27 gene expression on the resistance to Escherichia coli infection in piglets

期刊

GENE
卷 773, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.gene.2021.145415

关键词

Pig; HSP27 gene; Overexpression; E. coli; MAPK

资金

  1. National Natural Science Funds [31772560, 31972535]
  2. College Students' Innovation and Entrepreneurship Training Program of Jiangsu Province, China [XKYCX18_099]
  3. Science and Technology Supporting Project of Jiangsu province [BE2019341, BE2019344]
  4. Priority Academic Program Development of Jiangsu Higher Education Institutions

向作者/读者索取更多资源

The study investigated the function of HSP27 gene in pigs infected by E. coli, showing that overexpression of HSP27 gene could reduce adhesion ability of bacteria, decrease pro-inflammatory factors, and enhance cellular resistance to infection. RSK2 gene in the MAPK pathway may cooperate with HSP27 gene to participate in the immune response, providing a theoretical basis for studying the mechanism of anti-E. coli infection in piglets.
Heat shock protein 27 (HSP27) plays an important role in protecting cells from various stress factors. This study aimed to investigate the function of HSP27 gene and its regulatory mechanism as infected by Escherichia coli (E. coli) at the tissue and cellular levels. Real-time PCR was used to detect the differential expression of HSP27 gene in F18 resistant and sensitive Sutai pigs and the differential expression upon E. coli F18ab, F18ac, K88ac bacterial supernatant, thallus infection and LPS induction in IPEC-J2. In addition, the HSP27 gene overexpression vector was constructed to detect the effect of the HSP27 gene overexpression on the adhesion of E. coli F18 to IPEC-J2, secretion of pro-inflammatory factors, and the expression of the upstream key genes in Mitogen-activated protein kinase (MAPK) pathway. Ribosomal S6 kinase (RSK2) is an important protein in the MAPK pathway. Therefore, the RSK2 gene overexpression vector was constructed and the number of colonies was counted after co-transfection of HSP27 and RSK2 gene. Results revealed that the expression level of HSP27 gene in resistant individuals in 11 tissues was higher than sensitive type. At the cellular level, the relative expression levels of HSP27 gene were increased after F18ab, F18ac bacterial supernatant, F18ab thallus infection, and LPS induction for 4 h (P < 0.01). The adhesion ability of E. coli F18ab to IPEC-J2 was significantly reduced after HSP27 gene overexpression (P < 0.01), and the concentration of pro-inflammatory factors in the HSP27 gene overexpression group was significantly reduced compared with the control group after F18ab infection (P < 0.05). Furthermore, the expression of RSK2 was significantly increased in HSP27 overexpression group upon F18ab infection (P < 0.01). The colonies quantitative results also showed that the number of colonies was significantly reduced after co-transfection of HSP27 and RSK2 gene. We indicated that the high expression of HSP27 gene may resist the inflammatory response caused by exogenous stress and enhance the ability of IPEC-J2 to resist E. coli F18 infection. RSK2 gene in the MAPK pathway may cooperate with HSP27 gene to participate in the immune response of the organism, which provides a theoretical basis for the study of the mechanism of anti-E. coli infection in piglets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据