4.6 Article

Direct local heat flux measurement during water flow boiling in a rectangular minichannel using a MEMS heat flux sensor

期刊

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.expthermflusci.2020.110285

关键词

Flow Boiling; Minichannel; Heat transfer mechanisms; Local heat flux; MEMS sensor

资金

  1. JST PRESTO [18K13706]
  2. [JPMJPR17I8]
  3. Grants-in-Aid for Scientific Research [18K13706] Funding Source: KAKEN

向作者/读者索取更多资源

The study found that in water flow boiling in a minichannel, thin liquid film evaporation provides a high local heat flux and dominates wall heat transfer; post-rewetting transient heat conduction, though having high heat flux, has minimal overall impact on wall heat transfer; liquid-phase forced convection contributes little, especially at low vapor qualities.
Heat transfer characteristics of water flow boiling in a minichannel were investigated through the direct measurement of local heat flux using a fabricated MEMS heat flux sensor with a multi-layered structure. Local temperatures and heat fluxes in the water flow boiling were measured at a sampling frequency of 10 kHz in synchronism with the high-speed visualization of the boiling behavior. The measurement results revealed fundamental heat transfer processes, including thin liquid film evaporation, dry-out of the liquid film, transient heat conduction after dry patch rewetting, and single-phase forced convection. The thin liquid film evaporation indicated a high local heat flux that was well over 1 MW/m(2) and provided a dominant contribution to the wall heat transfer. Furthermore, the post-rewetting transient heat conduction indicated a high heat flux that was higher than 1 MW/m(2). However, it was insignificant in terms of the overall wall heat transfer at all the tested heat fluxes because of its short duration. The contribution of liquid-phase forced convection was also small, except at low vapor qualities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据