4.7 Article

Ductile fracture of high strength steels with morphological anisotropy, Part I: Characterization, testing, and void nucleation law

期刊

ENGINEERING FRACTURE MECHANICS
卷 244, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engfracmech.2021.107569

关键词

Ductile fracture; Gurson model; Anisotropic nucleation

向作者/读者索取更多资源

The study investigates the ductile fracture behavior of high strength steel using experimental results and models to build a predictive framework. The research reveals that the alignment of long inclusion axes leads to significant failure anisotropy, despite isotropic plastic behavior.
The ductile fracture behavior of a high strength steel is investigated using a micromechanicsbased approach with the objective to build a predictive framework for the fracture strain and crack propagation under different loading conditions. Part I of this study describes the experimental results and the determination of the elastoplastic behavior and damage nucleation under different stress triaxiality and Lode parameter values. The damage mechanism starts early void nucleation from elongated inclusions, either by particle cracking under loading oriented along the major axis, or by matrix decohesion when the main loading is transverse. Void nucleation is followed by plastic growth and coalescence. The long inclusion axis is preferentially aligned in one direction leading to significant failure anisotropy with the fracture strain in the transverse direction being almost 50% lower compared to the longitudinal one, even though the plastic behavior is isotropic. The experimental data are first used to calibrate the elastoplastic model. An enhanced anisotropic nucleation model is then developed and integrated into the Gurson-Tvergaard-Needleman scheme. The parameters identification of the anisotropic nucleation model is finally performed and validated towards the experimental results. All these elements are subsequently used in Part II to simulate the full failure behavior of all testing specimens in the entire spectrum of stress states, from nucleation to final failure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据