4.7 Article

Capacity design of a distributed energy system based on integrated optimization and operation strategy of exergy loss reduction

期刊

ENERGY CONVERSION AND MANAGEMENT
卷 231, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2020.113648

关键词

Distributed energy system; Capacity design; Operation strategy; Integrated optimization; Objective function; Exergy loss reduction

资金

  1. National Natural Science Foundation of China [61821004, 61733010]
  2. Department of Science and Technology of Shandong Province [2019JZZY010901]
  3. Natural Science Foundation of Shandong Province [ZR2019ZD09]
  4. Innovation Team Project of Jinan Science and Technology Bureau [2019GXRC003]
  5. Young Scholars Program of Shandong University [2016WLJH29]

向作者/读者索取更多资源

The study proposes an integrated optimization method for distributed energy systems, optimizing component capacity and operation to reduce carbon emissions, energy consumption, and operation costs. Results show that the proposed method outperforms other capacity design methods in terms of these parameters, with added advantages in exergy saving, uncertainty resistance, and power grid independence.
With the increase in the energy demands for heating, cooling, and electricity for buildings, the distributed energy system (DES), which is driven by renewable energy and natural gas, has become an economic and environmentally beneficial option for energy generation and supply. This paper presents a method for the integrated optimization of component capacity and annual operation of DES. In the outer cycle optimization, the capacity of energy generators and energy storages is optimized together to match the fluctuating energy demands of the whole year. In the inner cycle optimization, the hourly operation of energy generators and energy storage is managed following the operation strategy that reduces the exergy loss rate. Case studies of DES design under different grid connection modes for an office building demonstrate the feasibility and flexibility of the proposed method. A traditional centralized system is employed as a baseline of performance, and two other capacity design methods are utilized for comparison. Results show that DES designed by the proposed method reduces carbon emissions by 0.170 kg/kWh, energy consumption by 0.392 kWh/kWh, and operation costs by 0.123 CNY/kWh, on average. In contrast to DESs designed by other methods, the performance of these parameters is improved by 0.019 kg/kWh, 0.078 kWh/kWh, and 0.031 CNY/kWh, respectively. Moreover, the DES design exhibits advantages in exergy saving, uncertainty resistance, and power grid independence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Thermodynamics

Optimal design for component capacity of integrated energy system based on the active dispatch mode of multiple energy storages

Haoran Li, Chenghui Zhang, Bo Sun

Summary: The research proposes a new design method for integrated energy systems, which improves the stability and reliability of system performance through innovative operation modes and design methods, successfully reducing energy consumption, costs, and carbon emissions.

ENERGY (2021)

Article Green & Sustainable Science & Technology

Deep integration planning of sustainable energies in district energy system and distributed energy station

Haoran Li, Chenghui Zhang, Bo Sun

Summary: This study analyzed the characteristics of whole life operation of district energy system and proposed a deep integrated method to optimize various energy inputs and demands, achieving significant improvements in economic, energy, and environmental benefits compared to other integrated methods.

RENEWABLE & SUSTAINABLE ENERGY REVIEWS (2022)

Article Construction & Building Technology

Multi-energy flow cooperative dispatch for generation, storage, and demand in integrated energy systems with dynamic correction

Haoran Li, Zhicheng Wei, Qingcheng Miao, Longfei Zhao, Bo Sun, Chenghui Zhang

Summary: This paper proposes a cooperative dispatch method to optimize daily operations in integrated energy systems, taking into account the coupling characteristics of multi-energy flows. The results show that the method reduces energy supply costs, decreases carbon emissions, and improves energy efficiency.

SUSTAINABLE CITIES AND SOCIETY (2022)

Proceedings Paper Energy & Fuels

A rolling prediction optimization strategy for the optimal design of grid connected integrated CCHP system with renewable energy and energy storage

Haoran Li, Chenghui Zhang, Bo Sun, Yiming Li

THIRD INTERNATIONAL CONFERENCE ON ENERGY ENGINEERING AND ENVIRONMENTAL PROTECTION (2019)

Article Thermodynamics

Optimal electrode configuration and system design of compactly-assembled industrial alkaline water electrolyzer

Pengcheng Zhao, Jingang Wang, Liming Sun, Yun Li, Haiting Xia, Wei He

Summary: The production of green hydrogen through water electrolysis is crucial for renewable energy utilization and decarbonization. This research explores the optimal electrode configuration and system design of compactly-assembled industrial electrolyzer. The findings provide valuable insights for industrial application of water electrolysis equipment.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

Performance investigations of hybrid adsorption and thermo electric dehumidification desalination system

V. Baiju, P. Abhishek, S. Harikrishnan

Summary: Thermally driven adsorption desalination systems (ADS) have gained attention as an eco-friendly solution for water scarcity. However, they face challenges related to low water productivity and scalability. To overcome these challenges, integrating ADS with other desalination technologies can create a small-scale hybrid system. This study proposes integrating ADS with a Thermo Electric Dehumidification (TED) unit to enhance its performance.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

A transient multi-path decentralized resistance-capacity network model for prismatic lithium-ion batteries based on genetic algorithm optimization

C. X. He, Y. H. Liu, X. Y. Huang, S. B. Wan, Q. Chen, J. Sun, T. S. Zhao

Summary: A decentralized centroid multi-path RC network model is constructed to improve the temperature prediction accuracy compared to traditional RC models. By incorporating multiple heat flow paths and decentralizing thermal capacity, a more accurate prediction is achieved.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

Solar oil refinery: Solar-driven hybrid chemical cracking of residual oil towards efficiently upgrading fuel and abundantly generating hydrogen

Chaoying Li, Meng Wang, Nana Li, Di Gu, Chao Yan, Dandan Yuan, Hong Jiang, Baohui Wang, Xirui Wang

Summary: There is an urgent need to shift away from heavy dependence on fossil fuels and embrace renewable energy sources, particularly in the energy-intensive oil refining process. This study presents an innovative concept called the Solar Oil Refinery, which applies solar energy in oil refining. A solar multi-energies-driven hybrid chemical oil refining system that utilizes solar pyrolysis and electrolysis has been developed, significantly improving solar utilization efficiency, cracking rate, and hydrogen yield.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

Optimization design and performance analysis of a bio-inspired fish-tail vertical axis wind rotor

Chao Ma, Guanghui Wang, Dingbiao Wang, Xu Peng, Yushen Yang, Xinxin Liu, Chongrui Yang, Jiaheng Chen

Summary: This study proposes a bio-inspired fish-tail wind rotor to improve the wind power efficiency of the traditional Savonius rotor. Through transient simulations and orthogonal experiments, the key factors affecting the performance are identified. A response surface model is constructed to optimize the power coefficient, resulting in an improvement of 9.4% and 6.6% compared to the Savonius rotor.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

A new framework of piezoelectric smart tiles based on magnetic plucking, mechanical impact, and mechanical vibration force mechanisms for electrical energy harvesting

Sina Bahmanziari, Abbas-Ali Zamani

Summary: This paper proposes a new framework for improving electrical energy harvesting from piezoelectric smart tiles through a combination of magnetic plucking, mechanical impact, and mechanical vibration force mechanisms. Experimental results demonstrate a significant increase in energy yield and average energy harvesting time compared to other mechanisms.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

An efficient mixed-variable generation operator for integrated energy system configuration optimization

Nanjiang Dong, Tao Zhang, Rui Wang

Summary: This study establishes a multiobjective mixed-variable configuration optimization model for a comprehensive combined cooling, heating, and power energy system, and proposes an efficient generating operator to optimize this model. The experimental results show that the proposed algorithm performs better than other state-of-the-art algorithms.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

Sustainable production of bioethanol from office paper waste and its purification via blended polymeric membrane

Ahmed E. Mansy, Eman A. El Desouky, Tarek H. Taha, M. A. Abu-Saied, Hamada El-Gendi, Ranya A. Amer, Zhen-Yu Tian

Summary: This study aims to convert office paper waste into bioethanol through a sustainable pathway. The results show that physiochemical and enzymatic hydrolysis of the waste can yield a high glucose concentration. The optimal conditions were determined using the Box-Behnken design, and a blended membrane was used for ethanol purification.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

Steam generating heat pumps - Overview, classification, economics, and basic modeling principles

Sven Klute, Marcus Budt, Mathias van Beek, Christian Doetsch

Summary: Heat pumps are crucial for decarbonizing heat supply, and steam generating heat pumps have the potential to decarbonize the industrial sector. This paper presents the current state, technical and economic data, and modeling principles of steam generating heat pumps.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

Applying current-carrying-coil-based magnetic field (CCC-MF) to promote anaerobic digestion of chicken manure: Performance evaluation, mitigation of ammonia inhibition, microbial community analysis, and pilot-scale validation

Le Zhang, To-Hung Tsui, Yen Wah Tong, Pruk Aggarangsi, Ronghou Liu

Summary: This study investigates the effectiveness of a current-carrying-coil-based magnetic field in promoting anaerobic digestion of chicken manure. The results show that the applied magnetic field increases methane yield, decreases carbon dioxide production, and reduces the concentration of ammonia nitrogen. Microbial community analysis reveals the enrichment of certain methanogenic genera and enhanced metabolic pathways. Pilot-scale experiments confirm the technical effectiveness of the magnetic field assistance in enhancing anaerobic digestion of chicken manure.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

Co-optimization of speed planning and cost-optimal energy management for fuel cell trucks under vehicle-following scenarios

Bo Chen, Ruiqing Ma, Yang Zhou, Rui Ma, Wentao Jiang, Fan Yang

Summary: This paper presents an advanced energy management strategy for fuel cell hybrid electric heavy-duty vehicles, focusing on speed planning and energy allocation. By utilizing predictive co-optimization control, this strategy ensures safe inter-vehicle distance and minimizes energy demand. Simulation results demonstrate the effectiveness of the proposed method in reducing fuel cell degradation cost and overall operation cost.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

The benefits of a recuperative layout of an ORC-based unit fed by a solar-assisted reservoir operating as a micro-cogeneration plant

Fabio Fatigati, Roberto Cipollone

Summary: Organic Rankine Cycle-based microcogeneration systems that use solar sources to generate electricity and hot water can help reduce CO2 emissions in residential energy-intensive sectors. The adoption of a recuperative heat exchanger in these systems improves efficiency, reduces thermal power requirements, and saves on electricity costs.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

A piezoelectric-electromagnetic hybrid energy harvester for low-frequency wave motion and self-sensing wave environment monitoring

Lipeng He, Renwen Liu, Xuejin Liu, Xiaotian Zheng, Limin Zhang, Jieqiong Lin

Summary: This research proposes a piezoelectric-electromagnetic hybrid energy harvester (PEHEH) for low-frequency wave motion and self-sensing wave environment monitoring. The PEHEH shows promising power output and the ability to self-power and self-sense the wave environment.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

Multi-objective optimization of micro-gas turbine coupled with LCPV/T combined cooling, heating and power (CCHP) system based on following electric load strategy

Shangling Chu, Yang Liu, Zipeng Xu, Heng Zhang, Haiping Chen, Dan Gao

Summary: This paper studies a distributed energy system integrated with solar and natural gas, analyzes the impact of different parameters on its energy utilization and emissions reduction, and obtains the optimal solution through an optimization algorithm. The results show that compared to traditional separation production systems, this integrated system achieves higher energy utilization and greater reduction in carbon emissions.

ENERGY CONVERSION AND MANAGEMENT (2024)

Article Thermodynamics

Study on operation performance and application potential of the piston-type thermally-driven pump

Qingpu Li, Yaqi Ding, Guangming Chen, Yongmei Xuan, Neng Gao, Nian Li, Xinyue Hao

Summary: This paper proposes and studies a piston-type thermally-driven pump with a structure similar to a linear compressor, aiming to eliminate the high-quality energy consumption of existing pumps and replace mechanical pumps. The coupling mechanism of working fluid flow and element dimension is analyzed based on force analysis, and experimental data analysis is used to determine the pump operation stroke. Theoretical simulation is conducted to analyze the correlation mechanism of the piston assembly. The research shows that the thermally-driven pump can greatly reduce power consumption and has potential for industrial applications.

ENERGY CONVERSION AND MANAGEMENT (2024)