4.5 Article

Machine learning-based prediction of phases in high-entropy alloys

期刊

COMPUTATIONAL MATERIALS SCIENCE
卷 188, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.commatsci.2020.110244

关键词

High-entropy alloys; HEA; Phase prediction; Machine learning

向作者/读者索取更多资源

The study explores the use of machine learning approaches to classify solid solution high-entropy alloy phases, utilizing a dataset constructed from numerous experimental publications. Different feature selection schemes, feature ensembles, and machine learning classifiers were employed, with the RF, SVM, kNN, and NNET classifiers performing the best in classifying HEA solid solution phases. Results also demonstrated the validity and applicability of the model in predicting phase transitions in various alloy systems.
The answer to the question why HEAs exhibit such exceptional properties lies in their phases [1]. The implementation of machine learning (ML) approaches for the classification of solid solution high-entropy alloy (HEA) phases is, therefore, a topical theme in material informatics. For this study, we construct a new dataset based at least 430 peer-reviewed experimental publications including at least 40 metallurgy-specific predictor features. This study proposes a systematic framework incorporating of (a) six feature selection schemes, (b) construction of feature ensembles, and (c) the implementation of eight general ML classifiers. The classifiers, namely: regression tree (DT), linear discriminant analysis (LDA), naive Bayes (NB), generalized linear regression (GLMNET), random forest (RF), artificial neural networks (NNET), k-nearest neighbors (kNN), and support vector machines (SVM) were trained and evaluated on classifying HEA solid solution phases across feature ensemble sizes. Feature selection results identify the most discriminating predictor features and against intuition, the post-treatment heat-treatment features performed poorly. The RF, SVM, kNN, and NNET classifiers outperformed the other algorithms used with accuracy rates of 97.5%, 95.8%, 94.5%, and 94.0%, respectively. Furthermore, five alloy systems were used to test the validity and applicability of the model stabilization phases, production of phase transitions, and the triangulation of experimental and ab initio study findings were demonstrated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据