4.4 Review

Putting the August Krogh principle to work in developmental physiology

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cbpa.2020.110825

关键词

August Krogh principle; Development; Gigantism; Polyembryony; Parthenogenesis; Allometry

向作者/读者索取更多资源

The August Krogh principle, along with the unique traits of certain animals, aids researchers in understanding developmental phenomena, including accelerated development, transparent body walls, gigantism, reproductive traits, and large body mass ranges.
The August Krogh principle has guided many comparative physiological studies, being especially useful for developmental physiology. Several attributes of unusual, if not unique, animals enable researchers to understand developmental phenomena more generally - the essence of the Krogh principle. This article provides examples of unusual traits of animals currently being used to understand development and reproduction. 1) Accelerated development greatly minimizes time spent examining how animals develop across time from egg to adult. For example, the tropical gar begins to breath air within as little as 2.5 days after hatching - much faster than other air-breathing fishes - facilitating study of the development of respiratory reflexes in fishes. 2) Transparency of the body wall has been exploited to image cardiac output in near-microscopic larvae of the zebrafish and mahi mahi, and to capitalize on bacterial biosensors to investigate development of in vivo digestive function in Caenorhabditis elegans. 3) Gigantism, as in the chicken-sized embryos of the emu, or the larvae of the paradoxical frog, allows surgeries not otherwise feasible. 4) Reproductive traits such as polyembryony in armadillos and parthenogenesis in planaria have informed us about classic gene vs. environment questions. Finally, 5) large body mass range enables clearer allometric analyses. Insects like the silk moth, show a more than a 1000-fold difference between eggs and adults. The August Krogh principle, then, is not simply to justify the study of exotic animals (as interesting as that is!), but has been used to generate a broader synthesis and understanding of all taxa.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Biochemistry & Molecular Biology

Crustacean cardioactive peptide signaling system in the gastropod mollusk Pacific abalone

Sang Hyuck Lee, Mi Ae Kim, Young Chang Sohn

Summary: This study characterized the CCAP signaling system in Pacific abalone and revealed its relationship with the calcium/PKC and cAMP/PKA signal transduction pathways. It provides new insights into the evolutionary origins of the NPS and OT/VP signaling systems in protostomes.

COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY (2024)

Article Biochemistry & Molecular Biology

Daily thermal variability does not modify long-term gene expression relative to stable thermal environments: A case study of a tropical fish

Hanna Scheuffele, Erica V. Todd, John A. Donald, Timothy D. Clark

Summary: Global warming is causing an increase in extreme weather events, affecting ecosystems and the behavior of ectotherms. More research is needed to understand the impact of diurnal thermal variability and improve climate change predictions.

COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY (2024)

Article Biochemistry & Molecular Biology

Three steps down: Metabolic depression in winter-acclimatized crucian carp (Carassius carassius L.)

Jaakko Haverinen, Ahmed Badr, Markus Eskelinen, Matti Vornanen

Summary: The acclimatization of certain ectothermic vertebrates to winter conditions involves reduced energy consumption, achieved through decreased movement activity, depression of cellular functions, or switching to anaerobic energy production. This study on crucian carp showed that winter-acclimatized fish exhibited lower metabolic rates and a shift to anaerobic energy production during anoxia. Winter dormancy in crucian carp is achieved through active reduction of energy consumption, a slowed metabolic rate, and a direct response to oxygen absence.

COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY (2024)

Article Biochemistry & Molecular Biology

Links between reproduction and immunity in two sympatric wild marine fishes

Maria Cruz Sueiro, Cynthia A. Awruch, Gustavo M. Somoza, Walter S. Svagelj, Maria G. Palacios

Summary: According to life-history theory, there might be different immunological strategies between reproductive and non-reproductive periods due to limited resources. Our study on two sympatric marine fish species, rockfish and sandperch, found that reproductive individuals showed lower immune function, but higher levels of natural antibodies in rockfish females, compared to their non-reproductive counterparts. On the other hand, reproductively active sandperch males showed lower levels of natural antibodies and higher neutrophil to lymphocyte ratio and spleen index compared to non-reproductive males. The study highlights the species-specific patterns of immunity and the potential influence of resource limitation and abiotic factors on immune trade-offs in fish.

COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY (2024)

Article Biochemistry & Molecular Biology

Cardiovascular physiology of embryonic neotropic cormorants (Phalacrocorax brasilianus)

James B. Cummins, Dane A. Crossley II

Summary: This study focuses on cardiovascular development in altricial bird species, which has been less studied compared to precocial species. The researchers investigated the cholinergic and adrenergic receptor mediated control of arterial blood pressure and heart rate in the neotropic cormorant. The findings suggest that both cholinergic and adrenergic tone play a role in cardiovascular regulation in embryonic birds.

COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY (2024)

Article Biochemistry & Molecular Biology

Molecular cloning and tissue distribution of glucokinase and glucose-6-phosphatase catalytic subunit paralogs in largemouth bass Micropterus salmoides: Regulation by dietary starch levels and a glucose load

Ru Xia, Hong-Kang Liu, Xi-Feng Liu, Xin Deng, Chuan-Jie Qin, Yuan-Fa He, Shi-Mei Lin, Yong-Jun Chen

Summary: This study cloned the genes encoding glucokinase and glucose-6-phosphatase catalytic subunit in largemouth bass, revealing their distribution and transcriptional regulation. The results showed that the functions of G6pc and Gck in LMB were highly conserved in evolution, and the interconversion of glucose and G6P in the liver was well regulated at the transcript level under high starch diet, but a futile cycle was induced after a glucose load.

COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY (2024)