4.7 Article

Characteristics of organic carbon metabolism and bioremediation of petroleum-contaminated soil by a mesophilic aerobic biopile system

期刊

CHEMOSPHERE
卷 264, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.128521

关键词

Mesophilic conditions; Aeration rate; Bioavailable organic carbon; Petroleum degradation; Microbial community

资金

  1. National Science and Technology Major Project [2016ZX05040-005]
  2. National Natural Science Foundation of China [21707150]
  3. National Key Research and Development Program of China [2018YFC1801900]

向作者/读者索取更多资源

The innovative mesophilic aerobic biopile technology effectively improved the bioremediation efficiency of petroleum-contaminated soil. By regulating temperature, aeration, and BAC supplementation, a cost-effective biopile technology suitable for engineering applications was obtained.
An innovative mesophilic aerobic biopile technology was explored to improve the bioremediation efficiency of petroleum-contaminated soil. Under the suitable soil conditions (C:N:P at 100:5:1 and soil moisture content at 18%), the soil pH was hold in the range of 7.4 to 6.8 throughout the bioremediation process, the mesophilic (30 degrees C-40 degrees C) and forced aeration (3 h-on/1 h-off) conditions were the critical factors to enhancing petroleum biodegradation. The consumption of bioavailable organic carbon (BAC) which was one of the most important factors regulating microbial metabolism, was positively related (R-2 = 0.85, 40 degrees C) with the rate of petroleum removal. The 50% threshold of BAC could be regarded as the signal for supplementing the soil nutrients in the mesophilic aerobic biopiles to favor petroleum removal. The optimal conditions (40 degrees C, 3 h-on/1 h-off) maximized the utilization of BAC, promoted the petroleum degradation, and remained the microbial abundance and community composition stable to the greatest extent. In addition, the accumulation of aliphatic acids affected the microbial activity, which limited the efficiency of petroleum degradation to a certain extent. Jointly considering the energy consumption, time cost and soil conditions maintenance, a cost-effective biopile technology was obtained by temperature and aeration regulation and BAC supplementation, which could be applied to engineering application. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据