4.7 Article

Amidoxime modified chitosan based ion-imprinted polymer for selective removal of uranyl ions

期刊

CARBOHYDRATE POLYMERS
卷 256, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2020.117509

关键词

Chitosan; Amidoxime; Cyanoacetic acid; Uranyl ion; Ion-imprinting

资金

  1. Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia [S-1442-0003]

向作者/读者索取更多资源

The ion-imprinting strategy was used to develop a UO2(II) imprinted sorbent that can selectively remove UO2(II) ions from water. The sorbent showed high selectivity in multi-ionic solutions and maintained a high efficiency even after multiple regeneration and reuse cycles.
Ion-imprinting strategy was utilized in the development of UO2(II) imprinted amidoxime modified chitosan sorbent (U-AOCS) that can selectively remove UO2(II) from water. First, cyanoactic acid was linked to the chitosan -NH2 groups and then the inserted -CN groups were converted into amidoxime moieties, which chelate the UO2(II) ions and then the polymer chains were cross-linked by glyoxal. The UO2(II) ions have been then eluted leaving their matching recognition sites. The prepared U-AOCS along with the control NIP displayed maximum capacities toward the UO2(II) ions around 332 and 186 mg/g, respectively, and the isotherms were interpreted better by the Langmuir model in both adsorbents. Moreover, the selective uptake of the uranyl ions in multi-ionic aqueous solutions containing the tetravalent Th(IV) ions, trivalent Al(III), Eu(III), and Fe(III) ions, beside the divalent Pb(II), Co(II), Ni(II), Cu(II) ions confirmed the successful creation of a considerable UO2(II) ions selectivity in the U-AOCS construction. In addition, the U-AOCS adsorbent displayed economic feasibility by maintaining around 95 % of its initial efficiency after the regeneration and reuse for 5 adsorption/desorption cycles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据