4.8 Review

Electron transfer and mechanism of energy production among syntrophic bacteria during acidogenic fermentation: A review

期刊

BIORESOURCE TECHNOLOGY
卷 323, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2020.124637

关键词

Electron transfer; Energetic mechanism; Syntrophic bacteria; Acidogenic fermentation; Volatile fatty acids

资金

  1. National Natural Science Foundation of China, China [21806170, U20A2086]
  2. Hunan Provincial Key RD [2020WK2015]
  3. Shaanxi Introduced Talent Research Fund, China [A279021901]
  4. The Introduction of Talent Research Start-up fund [Z101022001]
  5. College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, China

向作者/读者索取更多资源

This review discusses the electron transfer and energetic mechanism in syntrophic processes between fermenting bacteria and acetogenic bacteria during VFAs production. Homoacetogenesis also plays a role in the syntrophic system by converting H2 and CO2 to acetate. Potential applications of these syntrophic activities in bioelectrochemical system and value-added product recovery from AD of organic wastes are also discussed. The study of acidogenic syntrophic relations is in its early stages, and additional investigation is required to better understand the mechanism of syntrophic relations.
Volatile fatty acids (VFAs) production plays an important role in the process of anaerobic digestion (AD), which is often the critical factor determining the metabolic pathways and energy recovery efficiency. Fermenting bacteria and acetogenic bacteria are in syntrophic relations during AD. Thus, clear elucidation of the interspecies electron transfer and energetic mechanisms among syntrophic bacteria is essential for optimization of acidogenic. This review aims to discuss the electron transfer and energetic mechanism in syntrophic processes between fermenting bacteria and acetogenic bacteria during VFAs production. Homoacetogenesis also plays a role in the syntrophic system by converting H2 and CO2 to acetate. Potential applications of these syntrophic activities in bioelectrochemical system and value-added product recovery from AD of organic wastes are also discussed. The study of acidogenic syntrophic relations is in its early stages, and additional investigation is required to better understand the mechanism of syntrophic relations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据