4.6 Article

Breaking down shell strength: inferences from experimental compression and future directions enabled by 3D printing

期刊

BIOLOGICAL REVIEWS
卷 96, 期 4, 页码 1077-1091

出版社

WILEY
DOI: 10.1111/brv.12692

关键词

mollusc; shell strength; compression; evolution; predator– prey interactions; 3D printing

类别

资金

  1. National Science Foundation Graduate Research Fellowship [DGE-1845298]
  2. Greg and Susan J. Walker Endowment
  3. Summer Research Stipend in Paleontology (Department of Earth and Environmental Science, University of Pennsylvania)
  4. Paul Bond Scholarship Fund

向作者/读者索取更多资源

Experimental studies on shell strength through compression tests provide insights into macroevolution, predator-prey dynamics, and the impacts of environmental factors on shells. These studies help understand the morphology, function, and preservation of shells in the fossil record.
Mollusc and brachiopod shells have served as biological armour for hundreds of millions of years. Studying shell strength in compression experiments can provide insights into macroevolution, predator-prey dynamics, and anthropogenic impacts on aquatic ecosystems. These studies have been conducted across fields including palaeontology, ecology, conservation biology and engineering using a range of techniques for a variety of purposes. Using this approach, studies have demonstrated that predators can cause changes in prey shell morphology in the laboratory over both short timescales and over longer evolutionary timescales. Similarly, environmental factors such as nutrient concentration and ocean acidification have been shown to influence shell strength. Experimental compression tests have been used to study the functional morphology of shell-crushing predators and to test how the taphonomic state of shells (e.g. presence of drill holes, degree of shell degradation) may influence their likelihood of being preserved in the fossil record. This review covers the basic principles and experimental design of compression tests used to infer shell strength. Although many investigations have used this methodology, few provide a detailed explanation of how meaningfully to interpret data generated using compression experiments for those unfamiliar with this method. Furthermore, this review provides a compilation of the findings of studies that have employed these experimental methods to address specific themes: taphonomy, morphology, predation, environmental variables, and climate change. Many authors have used experimental compression tests, however, disparities among methodologies (e.g. in experimental design, taxa, specimen preservation, etc.) limit the applicability of findings from taxon-specific studies to broader eco-evolutionary questions. The review highlights confounding factors, such as shell thickness, size, damage, microstructure, and taphonomic state, and address how they can be mitigated using three-dimensional (3D)-printed model shells. 3D prints have been demonstrated as valuable proxies for understanding aspects of shell morphology that cannot otherwise be experimentally isolated. Using 3D printed models allows simplification of complex biological systems for idealized experimental studies. Such studies can isolate specific aspects of shell morphology to establish fundamental relationships between form and function. Establishing standardized methods of testing shell strength in this way will not only permit comparison across studies but also will enable investigators systematically to add complexity to their models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据