4.8 Article

Comparison of the impact of fast charging on the cycle life of three lithium-ion cells under several parameters of charge protocol and temperatures

期刊

APPLIED ENERGY
卷 283, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2020.116344

关键词

Lithium-ion batteries; Cycle life; Fast charging; Charge protocol; Temperature sensitivity; Energy density

资金

  1. French National Association for Technological Research (ANRT) under grant CIFRE [2016/1200]

向作者/读者索取更多资源

This study investigates the impact of fast charging on batteries with different materials and energy densities. It reveals that the effect of fast charging on cycle life strongly depends on battery materials and internal design, and the degradation mechanisms vary depending on the cell materials. Additionally, the ageing of each cell was minimised at different temperatures when considering thermal conditions.
Fast charging of lithium-ion batteries is crucial for electric vehicles. As the charge current is a known degradation factor, assessing the impact of fast charging on battery ageing under several operating conditions is necessary to derive usage strategies for system integrators. To bridge existing knowledge gaps, this article reports on a comparative experimental ageing study in fast charging conditions. Three cells, differing in their materials and energy densities, were investigated. The impacts of the following three parameters are compared on these cells: charge current, end-of-charge voltage, and ambient temperature. The results reveal that the impact of fast charging on cycle life strongly depends on battery materials and internal design. The degradation of two of the cells significantly increased when the charge current and voltage increased, whereas that of the third cell was nearly independent of these parameters. While considering thermal conditions, the ageing of each cell was minimised at a different temperature, either cold, moderate, or warm. An analysis of degradation root causes indicates that distinct dominant degradation mechanisms occurred depending on the cell materials. The cells with higher energy density had a lower cycle life (between 100 and 900 cycles) than the most high-power cell (more than 1700 cycles). Experimental results allow the identification of three strategies for reducing charging time while minimising battery degradation. These strategies present several contributions to the design of energy storage systems for electric vehicles, including the choice of a cell, design of thermal management systems, and design of optimised fast charging protocols.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据