4.5 Article

NGF-Dependent and BDNF-Dependent DRG Sensory Neurons Deploy Distinct Degenerative Signaling Mechanisms

期刊

ENEURO
卷 8, 期 1, 页码 -

出版社

SOC NEUROSCIENCE
DOI: 10.1523/ENEURO.0277-20.2020

关键词

axons; BAX; BDNF; degeneration; dorsal root ganglion; NGF

向作者/读者索取更多资源

NGF and BDNF are important trophic factors for sensory neurons during development, but the signaling pathways leading to their death differ, with BDNF-dependent sensory neuron degeneration potentially involving BAX and ROS.
The nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are trophic factors required by distinct population of sensory neurons during development of the nervous system. Neurons that fail to receive appropriate trophic support are lost during this period of naturally occurring cell death. In the last decade, our understanding of the signaling pathways regulating neuronal death following NGF deprivation has advanced substantially. However, the signaling mechanisms promoting BDNF deprivation-induced sensory neuron degeneration are largely unknown. Using a well-established in vitro culture model of dorsal root ganglion (DRG), we have examined degeneration mechanisms triggered on BDNF withdrawal in sensory neurons. Our results indicate differences and similarities between the molecular signaling pathways behind NGF and BDNF deprivation-induced death. For instance, we observed that the inhibition of Trk receptors (K252a), PKC (Go6976), protein translation (cycloheximide; CHX), or caspases (zVAD-fmk) provides protection from NGF deprivation-induced death but not from degeneration evoked by BDNF-withdrawal. Interestingly, degeneration of BDNF-dependent sensory neurons requires BAX and appears to rely on reactive oxygen species (ROS) generation rather than caspases to induce degeneration. These results highlight the complexity and divergence of mechanisms regulating developmental sensory neuron death.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据