4.7 Article

Optimizing the Charge Carrier and Light Management of Nonfullerene Acceptors for Efficient Organic Solar Cells with Small Nonradiative Energy Losses

期刊

SOLAR RRL
卷 5, 期 4, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/solr.202100008

关键词

alkyl substituents; end groups; nonfullerene acceptors; nonradiative recombination loss; organic solar cells

资金

  1. National Natural Science Foundation of China [21822503, 51973043, 21534003, 21721002, 51863002, 51973042]
  2. Ministry of Science and Technology of China [2016YFA0200700]
  3. Youth Innovation Promotion Association
  4. Datong Coal Mine Group
  5. Chinese Academy of Sciences
  6. Swedish Research Council VR [2018-06048]
  7. Swedish Strategic Research Foundation through a Future Research Leader program [FFL 18-0322]
  8. Swedish Research Council [2018-06048] Funding Source: Swedish Research Council

向作者/读者索取更多资源

This study investigates the impact of molecular structures and aggregation morphologies on the photovoltaic properties of organic solar cells based on nonfullerene acceptors. By designing and synthesizing various NFAs with different alkyl substituents and end groups, the research demonstrates that optimizing the molecular structures of NFAs can lead to improved energy levels and reduced energy losses in OSCs.
The photovoltaic properties and energy losses of organic solar cells (OSCs) based on nonfullerene acceptors (NFAs) are highly dependent on their molecular structures and aggregation morphologies. Charge carrier and light managements are important to optimize NFA molecules. Herein, four NFAs with different alkyl substituents and end groups, named BTP-C11-N2F, BTP-C9-N2F, BTP-C9-IC4F, and BTP-C9-N4F, are designed and synthesized by side-chain shortening, end-acceptor pi-extension, and fluorination. As a result, a favorable morphology is achieved in BTP-C9-N4F-based OSCs by using typical high bandgap polymer PM6 as a donor, and this system obtains the highest power conversion efficiency of 17.0% with a short circuit current (J(sc)) of 26.3 mA cm(-2), an open circuit current (V-oc) of 0.85 V, and a fill factor (FF) of 75.7%. In addition, its light (J(sc)) and charge carrier (V-oc x FF) managements relative to the Shockley-Queisser limit are also increased. Extending the conjugation of the end groups increased the energy levels of NFAs and enabled an E-loss of 0.50 eV with a nonradiative recombination loss of as low as 0.20 eV in BTP-C11-N2F-based OSCs. This work provides an efficient strategy to optimize the molecular structures of nonfullerene acceptors and further improve the properties of OSCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据