4.3 Article

Monoallelic Mutations in CC2D1A Suggest a Novel Role in Human Heterotaxy and Ciliary Dysfunction

期刊

CIRCULATION-GENOMIC AND PRECISION MEDICINE
卷 13, 期 6, 页码 696-706

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCGEN.120.003000

关键词

cilia; exome; heterotaxy syndrome; isomerism; zebrafish

资金

  1. University of Hong Kong Seed Fund for Basic Research [201711159132]
  2. Society for the Relief of Disabled Children

向作者/读者索取更多资源

Background: Human heterotaxy is a group of congenital disorders characterized by misplacement of one or more organs according to the left-right axis. The genetic causes of human heterotaxy are highly heterogeneous. Methods: We performed exome sequencing in a cohort of 26 probands with heterotaxy followed by gene burden analysis for the enrichment of novel rare damaging mutations. Transcription activator-like effector nuclease was used to generate somatic loss-of-function mutants in a zebrafish model. Ciliary defects were examined by whole-mount immunostaining of acetylated alpha-tubulin. Results: We identified a significant enrichment of novel rare damaging mutations in the CC2D1A gene. Seven occurrences of CC2D1A mutations were found to affect 4 highly conserved amino acid residues of the protein. Functional analyses in the transcription activator-like effector nuclease-mediated zebrafish knockout models were performed, and heterotaxy phenotypes of the cardiovascular and gastrointestinal systems in both somatic and germline mutants were observed. Defective cilia were demonstrated by whole-mount immunostaining of acetylated alpha-tubulin. These abnormalities were rescued by wild-type cc2d1a mRNA but not cc2d1a mutant mRNA, strongly suggesting a loss-of-function mechanism. On the other hand, overexpression of cc2d1a orthologous mutations cc2d1a P559L and cc2d1a G808V (orthologous to human CC2D1A P532L and CC2D1A G781V) did not affect embryonic development. Conclusions: Using a zebrafish model, we were able to establish a novel association of CC2D1A with heterotaxy and ciliary dysfunction in the F2 generation via a loss-of-function mechanism. Future mechanistic studies are needed for a better understanding of the role of CC2D1A in left-right patterning and ciliary dysfunction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据