4.7 Article

Novel method for the on-line estimation of low-frequency impedance of lithium-ion batteries

期刊

JOURNAL OF ENERGY STORAGE
卷 32, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.est.2020.101818

关键词

Lithium-ion batteries; Impedance estimation; On-line algorithm; Equivalent circuit model; Low-frequency; Degradation diagnostics

向作者/读者索取更多资源

Impedance is an important characteristic of lithium-ion batteries since it directly influences their power capability. However, battery impedance is highly dependent on the operating condition and increases over the lifetime of the battery, due to degradation of the latter. Continuous tracking of the impedance can hence provide meaningful insights into the aging status of a battery. However, the on-line determination of battery impedance parameters, especially for its low-frequency part, is a challenging task, which has not yet been solved unambiguously in literature. This work provides an algorithm for the on-line determination of battery impedance, which features a novel approach to quantifying the impedance caused by diffusion processes at low frequencies. The algorithm works by parameterizing an equivalent circuit model comprised of RC elements, which reproduces the Li-ion kinetics. The on-line functionality is enabled by parameterizing the model during parameter identification windows of battery operating data, which allow for the separation of high-frequency and lowfrequency dynamics. The developed algorithm is designed in such a way that it can in future be embedded into a low-cost microcontroller by taking into account the relevant computational and memory limitations. During experimental validation with a commercial Li-ion battery, the root-mean-square error of the simulated voltage during diverse static and dynamic loads is reduced by over 50% compared to a benchmark algorithm without the proposed approach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Energy & Fuels

Optimizing the operation of energy storage using a non-linear lithium-ion battery degradation model

Arpit Maheshwari, Nikolaos G. Paterakis, Massimo Santarelli, Madeleine Gibescu

APPLIED ENERGY (2020)

Article Energy & Fuels

Experimental investigation of the influence of electrical contact resistance on lithium-ion battery testing for fast-charge applications

Nikolaos Wassiliadis, Manuel Ank, Leo Wildfeuer, Michael K. Kick, Markus Lienkamp

Summary: This article evaluates the impact of ECR on battery cell behavior through high charging rate experiments, finding that high ECRs could have negative effects on battery cells and influence conclusions drawn from cycle life tests.

APPLIED ENERGY (2021)

Article Energy & Fuels

Teardown analysis and characterization of a commercial lithium-ion battery for advanced in electric vehicles

Leo Wildfeuer, Nikolaos Wassiliadis, Alexander Karger, Fabian Bauer, Markus Lienkamp

Summary: In this study, a commercially available lithium-ion cell was analyzed through tear-down analysis and computed tomography scans. The electrochemical properties of the anode and cathode were examined using mini pouch half cells, and detailed insights into the kinetics of the cell were obtained. A comprehensive open-source dataset of the investigated cell was provided, fostering research in advanced models and algorithms for lithium-ion batteries.

JOURNAL OF ENERGY STORAGE (2022)

Article Energy & Fuels

Modeling capacity fade of lithium-ion batteries during dynamic cycling considering path dependence

Alexander Karger, Leo Wildfeuer, Deniz Ayguel, Arpit Maheshwari, Jan P. Singer, Andreas Jossen

Summary: This study investigates the modeling methods for capacity fade in lithium-ion batteries during dynamic cyclic aging tests. The results show that the CAP-method accurately models the capacity fade when considering dynamic conditions, while the CCT-method is more accurate in modeling capacity gradient when there is a large difference between actual and reference charge-throughput. The CAP-method assumes path independence through history independence, and the relatively low capacity fade error suggests that capacity fade behaves path-independently in the dynamic cyclic aging tests.

JOURNAL OF ENERGY STORAGE (2022)

Article Chemistry, Physical

Experimental degradation study of a commercial lithium-ion battery

Leo Wildfeuer, Alexander Karger, Deniz Ayguel, Nikolaos Wassiliadis, Andreas Jossen, Markus Lienkamp

Summary: In this study, the aging behavior of commercial lithium-ion cells with silicon-doped graphite anodes and nickel-rich NCA cathodes is analyzed. The cells are aged under different calendar and cycle aging conditions. The study reveals that the check-up procedure significantly increases the aging observed after a certain period of time, indicating that the lifetime of lithium-ion batteries may have been underestimated in previous studies. The influence of temperature, state of charge (SOC), and depth-of-discharge on both calendar and cycle aging is also investigated.

JOURNAL OF POWER SOURCES (2023)

Article Energy & Fuels

Capacity and degradation mode estimation for lithium-ion batteries based on partial charging curves at different current rates

Julius Schmitt, Mathias Rehm, Alexander Karger, Andreas Jossen

Summary: This study demonstrates a method of using reconstructed open circuit voltage (OCV) curves to analyze the partial charging curves of a commercial lithium-ion cell, providing valuable information about degradation modes and remaining cell capacity. Accurate OCV reconstruction and degradation mode estimation can be achieved when a state of charge (SOC) window between 20% and 70% is available. The method is also applicable to charging curves at higher current rates by considering an additional overpotential.

JOURNAL OF ENERGY STORAGE (2023)

Article Electrochemistry

Combining the Distribution of Relaxation Times from EIS and Time-Domain Data for Parameterizing Equivalent Circuit Models of Lithium-Ion Batteries

Leo Wildfeuer, Philipp Gieler, Alexander Karger

Summary: This research proposes a method to combine time-domain and frequency-domain measurement data for parameterization of RC elements by exploiting the full potential of the distribution of relaxation times (DRT). This approach not only overcomes the limitations of traditional algorithms, but also directly determines the parameters of RC elements.

BATTERIES-BASEL (2021)

Article Energy & Fuels

Quantifiability of inherent cell-to-cell variations of commercial lithium-ion batteries

Leo Wildfeuer, Markus Lienkamp

Summary: Parameter variations of lithium-ion batteries can reduce battery pack performance, with impedance changes potentially linked to imperfect measurement setup. Experimental findings suggest that parameter variations are greatly influenced by temporal and spatial temperature inhomogeneities, and compensating for these effects can significantly reduce resistance variation.

ETRANSPORTATION (2021)

Article Electrochemistry

Accelerated Aging Characterization of Lithium-ion Cells: Using Sensitivity Analysis to Identify the Stress Factors Relevant to Cyclic Aging

Tanja Gewald, Adrian Candussio, Leo Wildfeuer, Dirk Lehmkuhl, Alexander Hahn, Markus Lienkamp

BATTERIES-BASEL (2020)

Article Energy & Fuels

Exploring fatigue characteristics of metallic boss-polymer liner adhesion in hydrogen storage tanks: Experimental insights post surface treatment

M. Ahmadifar, K. Benfriha, M. Shirinbayan, A. Aoussat, J. Fitoussi

Summary: This study investigates the impact of innovative polymer-metal interface treatment on the reliability and robustness of hydrogen storage technology. A scaled-down demonstrator was fabricated using rotomolding to examine the mechanical characteristics, damage, and fatigue behaviors of the metal-polymer interface. The findings reveal that sandblasting treatment enhances the resilience of the interface.

JOURNAL OF ENERGY STORAGE (2024)

Article Energy & Fuels

Enhancing photovoltaic performance through solar radiation splitting: A beam splitter-assisted hybrid approach with 2-D tracking and PCM integration

A. A. Kandil, Mohamed M. Awad, Gamal I. Sultan, Mohamed S. Salem

Summary: This paper proposes a novel hybrid system that splits solar radiation into visible and thermal components using a beam splitter and integrates a phase change material (PCM) packed bed with a PV cell. Experimental and theoretical analyses show that the hybrid configuration significantly increases the net power output of the system compared to using a PV system alone.

JOURNAL OF ENERGY STORAGE (2024)

Article Energy & Fuels

Optimal configuration of multi microgrid electric hydrogen hybrid energy storage capacity based on distributed robustness

Jinchao Li, Ya Xiao, Shiqiang Lu

Summary: The combination of energy storage and microgrids is crucial in addressing the uncertainty of distributed wind and solar resources. This article proposes a multi microgrid interaction system with electric-hydrogen hybrid energy storage, which optimizes the system's capacity configuration to improve its economy and reliability.

JOURNAL OF ENERGY STORAGE (2024)

Review Energy & Fuels

Recent advances in NiO-based nanostructures for energy storage device applications

Shri Hari S. Pai, Sarvesh Kumar Pandey, E. James Jebaseelan Samuel, Jin Uk Jang, Arpan Kumar Nayak, HyukSu Han

Summary: This review discusses the structure-property relationship of nickel oxide nanostructures as excellent supercapacitive materials and provides an overview of various preparation methods and strategies to enhance specific capacitance. It comprehensively analyzes the current status, challenges, and future prospects of nickel oxide electrode materials for energy storage devices.

JOURNAL OF ENERGY STORAGE (2024)

Article Energy & Fuels

Ni(OH)2 nanosheets modified Prussian blue tubes to construct buffer layer for lithium dendrite regulation

Xiaowei Wu, Xin Dong, Ziqin Liu, Xinyi Wang, Pu Hu, Chaoqun Shang

Summary: The growth of Li dendrites in lithium metal batteries is effectively controlled by constructing a three-dimensional framework on the surface of Li using Ni(OH)2 nanosheets modified Prussian blue tubes. This method provides a homogenous Li+ flux and sufficient space to accommodate the volume change of Li, resulting in suppressed dendrite growth and improved cycling performance.

JOURNAL OF ENERGY STORAGE (2024)

Article Energy & Fuels

Revealing bimetallic synergy in van der Waals AgInP2Se6 nanosheets for alkali metal ion battery electrodes

Yan-Jie Liao, Yi-Yen Hsieh, Yi-Chun Yang, Hsing-Yu Tuan

Summary: We present two-dimensional AgInP2Se6 (AIPSe) bimetallic phosphorus trichalcogenides nanosheets as anodes for advanced alkali metal ion batteries (AMIBs). The introduction of bimetallic components enhances the electronic/ionic conductivity and optimizes the redox dynamics, resulting in superior electrochemical performance. The AIPSe@G anodes achieve high specific capacity, excellent cycle stability, and rate capability in both lithium-ion (LIBs) and potassium-ion batteries (PIBs). The comprehensive full cell tests further demonstrate the stability of AIPSe@G anodes under diverse current regimes.

JOURNAL OF ENERGY STORAGE (2024)

Article Energy & Fuels

Optimal scheduling of hydrogen blended integrated electricity-gas system considering gas linepack via a sequential second-order cone programming methodology

Chenghu Wu, Weiwei Li, Tong Qian, Xuehua Xie, Jian Wang, Wenhu Tang, Xianfu Gong

Summary: In the context of increasing global environmental pollution and constant increase of carbon emission, hydrogen production from surplus renewable energy and hydrogen transportation using existing natural gas pipelines are effective means to mitigate renewable energy fluctuation, build a decarbonized gas network, and achieve the goal of carbon peak and carbon neutral in China. This paper proposes a quasi-steady-state modeling method of a hydrogen blended integrated electricity-gas system (HBIEGS) considering gas linepack and a sequential second-order cone programming (S-SOCP) method to solve the developed model. The results show that the proposed method improves computational efficiency by 91% compared with a general nonlinear solver.

JOURNAL OF ENERGY STORAGE (2024)

Article Energy & Fuels

Preparation and characterization of novel low-cost sensible heat storage materials with steel slag

Jingcen Zhang, Zhi Guo, Yazheng Zhu, Haifeng Zhang, Mengjie Yan, Dong Liu, Junjie Hao

Summary: In this study, a new type of sensible heat storage material was prepared using low-cost steel slag as the main component, providing an effective way of recycling steel slag. By analyzing the effects of different pretreatment steel slag content and sintering temperatures on the organization and properties of heat storage materials, the study found that the steel slag heat storage material exhibited excellent performance and stability under certain conditions.

JOURNAL OF ENERGY STORAGE (2024)

Article Energy & Fuels

Charge storage capacity of electromethanogenic biocathodes

D. Carrillo-Pena, G. Pelaz, R. Mateos, A. Escapa

Summary: Methanogenic biocathodes have the potential to convert CO2 and electricity into methane, making them suitable for long-term electrical energy storage. They can also function as biological supercapacitors for short-term energy storage, although this aspect has received less attention. In this study, carbon-felt-based MB modified with graphene oxide were investigated for their electrical charge storage capabilities. Results showed that the potential of the electrode during discharging plays a significant role in determining the charge storage capacity.

JOURNAL OF ENERGY STORAGE (2024)

Article Energy & Fuels

Ragone plots of material-based hydrogen storage systems

Marco Gambini, Federica Guarnaccia, Michele Manno, Michela Vellini

Summary: This paper presents an analytical assessment of the energy-power relationship for different material-based hydrogen storage systems. It explores the impact of power demand on the amount of discharged hydrogen and the utilization factor. The results show that metal hydrides have higher specific power compared to liquid organic hydrogen carriers. The study provides insights into the discharge duration and energy utilization of hydrogen storage systems.

JOURNAL OF ENERGY STORAGE (2024)

Article Energy & Fuels

Steps towards the ideal CV and GCD results with biodegradable polymer electrolytes: Plasticized MC based green electrolyte for EDLC application

Shujahadeen B. Aziz, Rebar T. Abdulwahid, Pshko A. Mohammed, Srood O. Rashid, Ari A. Abdalrahman, Wrya O. Karim, Bandar A. Al-Asbahi, Abdullah A. A. Ahmed, M. F. Z. Kadir

Summary: This study investigates a novel biodegradable green polymer electrolyte for energy storage. Results show that the sample with added glycerol has the highest conductivity. The primary conduction species in the electrolyte are ions. Testing confirms that the sample can withstand a voltage suitable for practical applications.

JOURNAL OF ENERGY STORAGE (2024)

Article Energy & Fuels

Novel effective thermal conductivity numerical model for distinct shaped pure paraffins (C14-C33)

Binit Kumar, Abhishek Awasthi, C. Suresh, Yongseok Jeon

Summary: This study presents a new numerical model for effective thermal conductivity that overcomes the limitations of previous models. The model can be applied to various shapes and phase change materials, using the same constants. By incorporating the natural convection effect, the model accurately calculates the thermal conductivity. The results of the study demonstrate the effectiveness of the model for different shapes and a wide range of alkanes.

JOURNAL OF ENERGY STORAGE (2024)

Article Energy & Fuels

Upcycling electrode materials from spent single-use zinc-carbon/alkaline batteries into rechargeable lithium-ion battery application

Supak Pattaweepaiboon, Wisit Hirunpinyopas, Pawin Iamprasertkun, Katechanok Pimphor, Supacharee Roddecha, Dirayanti Dirayanti, Adisak Boonchun, Weekit Sirisaksoontorn

Summary: In this study, electrode powder from spent zinc-carbon/alkaline batteries was upcycled into LiMn2O4 cathode and carbon anode for rechargeable lithium-ion batteries. The results show that the upcycled LiMn2O4 exhibits improved electrochemical performance, with higher discharge capacity compared to pristine LiMn2O4. Additionally, the recovered carbon materials show superior cycling performance. This research provides great potential for upcycling waste battery electrodes to high-value cathode and anode materials for lithium-ion battery applications.

JOURNAL OF ENERGY STORAGE (2024)

Article Energy & Fuels

Joint evaluation and prediction of SOH and RUL for lithium batteries based on a GBLS booster multi-task model

Pan Yang, H. D. Yang, X. B. Meng, C. R. Song, T. L. He, J. Y. Cai, Y. Y. Xie, K. K. Xu

Summary: This paper introduces a novel multi-task learning data-driven model called GBLS Booster for accurately assessing the state of health (SOH) and remaining useful life (RUL) of lithium batteries. The model combines the strengths of GBLS and the CNN-Transformers algorithm-based Booster, and the Tree-structured Parzen Estimator (TPE) algorithm is used for optimization. The study devises 10 healthy indicators (HIs) derived from readily available sensor data to capture variations in battery SOH. The random forest method (RF) is employed for feature refinement and data dimension reduction, while the complete empirical mode decomposition (CEEMDAN) method and the Pearson correlation coefficient are used for noise reduction and data point elimination in RUL prediction. The proposed model demonstrates exceptional accuracy, robustness, and generalization capabilities.

JOURNAL OF ENERGY STORAGE (2024)

Article Energy & Fuels

Robust empirical aging model generation methodology: Description and validation

M. Arrinda, M. Oyarbide, L. Lizaso, U. Osa, H. Macicior, H. J. Grande

Summary: This paper proposes a robust aging model generation methodology for lithium-ion batteries with any kind of lab-level aging data availability. The methodology involves four phases and ensures the robustness of the aging model through a verification process.

JOURNAL OF ENERGY STORAGE (2024)