4.8 Article

Combining alloy and process modification for micro-crack mitigation in an additively manufactured Ni-base superalloy

期刊

ADDITIVE MANUFACTURING
卷 36, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.addma.2020.101443

关键词

Alloy design; Laser powder bed fusion; Crack mitigation; Ni superalloy

资金

  1. Competence Center for Materials Science and Technology (CCMX)
  2. PX Group

向作者/读者索取更多资源

The additive manufacturing (AM) of the gamma' precipitation strengthened Ni-base superalloys still remains a challenge due to their susceptibility to micro-cracking. Post-processing, such as HIPing, has been shown to heal the micro-cracks but it remains desirable to prevent the micro-cracking from even occurring. Numerous studies highlighting potential mechanisms for micro-cracking exist but few solutions have been demonstrated. The intent of this study was to identify the micro-crack mechanisms and demonstrate how process and alloy modifications can reduce the micro-cracking. The micro-crack surfaces exhibit a dendritic appearance that is indicative of solidification cracking. Additionally, Gleeble experiments, simulating the L-PBF induced Heat Affected Zone (HAZ), were conducted below the y' solvus temperature and reveal the existence of grain boundary liquation, indicative of liquation cracking. Two cracking mechanisms are thus coexisting during Laser Powder Bed Fusion (L-PBF) of CM247LC. Based on experimental evidence, reduction in the solidification interval of CM247LC was investigated as a candidate for micro-crack mitigation and a new alloy was developed. As Hf is found to have a significant influence on the freezing range of the alloy, a new CM247LC without Hf was produced and tested. The study also involved two separate and distinct processing conditions to highlight the importance of melt pool geometry on micro-crack density. Samples fabricated with the Hf-free CM247LC, CM247LC NHf, in combination with optimized processing conditions exhibit a reduction in crack density of 98 %. This study demonstrates the importance of both processing conditions and alloy chemistry on micro-cracking in L-PBF fabricated gamma' hardening Ni-base superalloys.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据