4.8 Article

Reducing near-surface voids in metal (Ti-6Al-4V) powder bed fusion additive manufacturing: the effect of inter-hatch travel time

期刊

ADDITIVE MANUFACTURING
卷 36, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.addma.2020.101592

关键词

Microstructure; powder bed fusion; Void Detection; Scan Patterns; Ti-6Al-4V

资金

  1. National Center for Defense Manufacturing and Machining under the America Makes Program
  2. Air Force Research Laboratory [FA8650-16-2-5700]

向作者/读者索取更多资源

Powder bed fusion additive manufacturing (L-PBF) is being rapidly adopted by industry for the production of novel and complex geometries. However, production of L-PBF parts with near-surface voids remains a primary concern. Such voids impede the use of additive manufacturing for thin geometries and may significantly reduce fatigue life. Here, we develop a statistical model which relates the probability of near-surface void formation to toolpath parameters used in part production. Using registered computed tomography (CT) data as ground truth to measure void location and morphology together with actual build plan data (e.g. vector trajectories, powers, speeds), we identify the time between nonconsecutive, adjacent hatch strikes to be a statistically significant (p = 8.54 x 10(-20)) indicator of the likelihood that a given point becomes a void. Furthermore, we show that altering hatching strategy to include fewer short hatches (i.e. a longer time between nonconsecutive, adjacent hatch strikes) can produce a similar geometry with significantly fewer near-surface voids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据