4.3 Article

Density functional modeling and total scattering analysis of the atomic structure of a quaternary CaO-MgO-Al2O3-SiO2 (CMAS) glass: Uncovering the local environment of calcium and magnesium

期刊

PHYSICAL REVIEW MATERIALS
卷 5, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevMaterials.5.015603

关键词

-

资金

  1. National Science Foundation (US) [1362039]
  2. Princeton Institute for Computational Science and Engineering (PICSciE)
  3. Office of Information Technology's High Performance Computing Center and Visualization Laboratory at Princeton University
  4. Charlotte Elizabeth Proctor Fellowship from the Princeton Graduate School
  5. US DOE Office of Science [DE-AC02-06CH11357]
  6. DOE Office of Basic Energy Sciences
  7. NSF [DMR 00-76488]
  8. DOE [DE-AC52-06NA25396]

向作者/读者索取更多资源

This study combines molecular dynamics simulations and density functional theory calculations to generate detailed structural representations for a CMAS glass, which may enhance our mechanistic understanding on CMAS glass dissolution behavior in the future.
Quaternary CaO-MgO-Al2O3-SiO2 (CMAS) glasses are important constituents of the Earth's lower crust and mantle, and they also have important industrial applications such as in metallurgical processes, concrete production, and emerging low-CO2 cement technologies. In particular, these applications rely heavily on the composition-structure-reactivity relationships for CMAS glasses, which are not yet well established. In this study, we combined force-field molecular dynamics (MD) simulations and density functional theory (DFT) calculations to generate detailed structural representations for a CMAS glass. The generated structures are not only thermodynamically favorable (according to DFT calculations) but also agree with experiments (including our x-ray and neutron total scattering data as well as literature data). Detailed analysis of the final structure (including partial pair distribution functions, coordination number, and oxygen environment) enabled existing discrepancies in the literature to be reconciled and has revealed important structural information on the CMAS glass, specifically (i) the unambiguous assignment of medium-range atomic ordering, (ii) the preferential role of Ca atoms as charge compensators and Mg atoms as network modifiers, (iii) the proximity of Mg atoms to free oxygen sites, and (iv) clustering of Mg atoms. Electronic property calculations suggest higher reactivity for Ca atoms as compared with Mg atoms, and that the reactivity of oxygen atoms varies considerably depending on their local bonding environment. Overall, this information may enhance our mechanistic understanding on CMAS glass dissolution behavior in the future, including dissolution-related mechanisms occurring during the formation of low-CO2 cements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据