4.8 Article

Genetic selection for growth drives differences in intestinal microbiota composition and parasite disease resistance in gilthead sea bream

期刊

MICROBIOME
卷 8, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s40168-020-00922-w

关键词

Sparus aurata; Selective breeding; Growth; Plant-based diets; Genome-diet interactions; Intestinal bacteria; Enteromyxum leei; Domestication; Plasticity

资金

  1. Spanish Project Bream-AquaINTECH: From Nutrition and Genetics to Sea Bream Aquaculture Intensification and Technological Innovation [RTI2018-094128-B-100]
  2. Spanish Project PROGENSA III: Mejora de la Competitividad del Sector de la Dorada a Traves de la Seleccion Genetica, JACUMAR program
  3. European Maritime and Fisheries
  4. European Union's Horizon 2020 research and innovation programme [818367]
  5. AquaIMPACT - Genomic and nutritional innovations for genetically superior farmed fish to improve efficiency in European aquaculture
  6. Ramon y Cajal Postdoctoral Research Fellowship [RYC2018-024049-I/AEI/10.13039/501100011033]
  7. Postdoctoral Research Fellowship (Juan de la Cierva-Incorporacion) from MINECO [IJCI-2016-27637]
  8. CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI)
  9. Ramon y Cajal Postdoctoral Research Fellowship (ESF)
  10. H2020 Societal Challenges Programme [818367] Funding Source: H2020 Societal Challenges Programme

向作者/读者索取更多资源

Background: The key effects of intestinal microbiota in animal health have led to an increasing interest in manipulating these bacterial populations to improve animal welfare. The aquaculture sector is no exception and in the last years, many studies have described these populations in different fish species. However, this is not an easy task, as intestinal microbiota is composed of very dynamic populations that are influenced by different factors, such as diet, environment, host age, and genetics. In the current study, we aimed to determine whether the genetic background of gilthead sea bream (Sparus aurata) influences the intestinal microbial composition, how these bacterial populations are modulated by dietary changes, and the effect of selection by growth on intestinal disease resistance. To that aim, three different groups of five families of gilthead sea bream that were selected during two generations for fast, intermediate, or slow growth (F3 generation) were kept together in the same open-flow tanks and fed a control or a well-balanced plant-based diet during 9 months. Six animals per family and dietary treatment were sacrificed and the adherent bacteria from the anterior intestinal portion were sequenced. In parallel, fish of the fast- and slow-growth groups were infected with the intestinal parasite Enteromyxum leei and the disease signs, prevalence, intensity, and parasite abundance were evaluated. Results: No differences were detected in alpha diversity indexes among families, and the core bacterial architecture was the prototypical composition of gilthead sea bream intestinal microbiota, indicating no dysbiosis in any of the groups. The plant-based diet significantly changed the microbiota in the intermediate- and slow-growth families, with a much lower effect on the fast-growth group. Interestingly, the smaller changes detected in the fast-growth families potentially accounted for more changes at the metabolic level when compared with the other families. Upon parasitic infection, the fast-growth group showed significantly lower disease signs and parasite intensity and abundance than the slow-growth animals. Conclusions: These results show a clear genome-metagenome interaction indicating that the fast-growth families harbor a microbiota that is more flexible upon dietary changes. These animals also showed a better ability to cope with intestinal infections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据