4.4 Article

Application of Improved Dynamic Substructure Finite Element Model-Based State-Space Techniques in Mistuned Blisks

期刊

出版社

HINDAWI LTD
DOI: 10.1155/2020/8817531

关键词

-

资金

  1. National Key R D Plan Project [2017YFB1301300]
  2. National Natural Science Foundation of China [11772011, 11902220]
  3. National Natural Science Foundation of Hebei Province [E2020202217]

向作者/读者索取更多资源

Aeroengine is a complex mechanical equipment, and it works at high temperature, pressure, rotational-speed, and severe loads. One of the core problems is that the vibration and mistuning of bladed disk lead to failure and affect the safety and reliability of aeroengine. Previously, one sector taken as the research object is not suitable; the integrally mistuned bladed disk (blisk) is taken as the research object is very necessary; however, the computational efficiency of mistuned blisk is very low. Therefore, a reduced-order model approach, i.e., an improved dynamic substructure finite element model-based state-space technique (IDSFEM-SST), is proposed to investigate the mistuned blisk. Firstly, the reduced-order substructure finite element model is established by this method, and then, the modal frequencies and modal strain energy amplitudes are investigated. Secondly, the maximum displacement responses are analyzed. Finally, the computational efficiency and accuracy of mistuned blisk via IDSFEM-SST is compared with that of the classical dynamic substructure finite element model and the high-fidelity finite element model to verify the effectiveness of this approach. This study has significance to the dynamic research and engineering practices for complex mechanical structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据