4.5 Article

Developing a high taxonomic resolution food web model to assess the functional role of forage fish in the California Current ecosystem

期刊

ECOLOGICAL MODELLING
卷 335, 期 -, 页码 87-100

出版社

ELSEVIER
DOI: 10.1016/j.ecolmodel.2016.05.010

关键词

Forage fish; Food web model; California Current

类别

资金

  1. Pew Charitable Trusts (Ocean Science Division and the Pew Forage Fish Conservation Initiative)
  2. National Fish and Wildlife Foundation
  3. Marisla Foundation

向作者/读者索取更多资源

Understanding the role of forage fish in marine food webs is an important part of ecosystem-based fisheries management. Food web models are a common tool used to account for important characteristics of forage fish and their trophodynamics. One primary limitation of many existing food web models is that the taxonomic resolution of forage fish and their predators is overly simplified. Here, we developed a food web model with high taxonomic resolution of forage fish and their predators in the California Current to more comprehensively describe trophic linkages involving forage fish and examine the ecological role of forage fish in this system. We parameterized a mass-balanced food web model (Ecopath) with 92 living functional groups, and used this to quantify diet dependency on forage fish, determine the main predators of forage fish, identify the topological position of forage fish in the food web, and calculate an index that identifies forage species or species aggregations that have key ecological roles (Supportive Role to Fishery ecosystem, SURF). Throughout, we characterized parameter uncertainty using a Monte Carlo approach. Though diets revealed some predators had high diet dependencies on individual forage fish species, most predators consumed multiple forage fish and also had notable diet overlap with forage fish. Consequently, no single forage fish appeared to act as a vital nexus species that is characteristic of wasp-waisted food webs in other upwelling regions. Additionally, no single forage fish was identified as key by the SURF index, but if predators and fisheries view certain pairs of forage fish as functionally equivalent, some plausible pairs would be identified as key assemblages. Specifically, sardine & anchovy (Sardinops sagax & Engraulis mordax) and herring & anchovy (Clupea pallasii & E. mordax) are key when predator populations depend on the aggregate availability of these species. This food web model can be used to support generalized equilibrium trade-off analysis or dynamic modeling to identify specific predators that would be of conservation concern under conditions of future forage fish depletion. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据