4.7 Article

Universal Fast-Flux Control of a Coherent, Low-Frequency Qubit

期刊

PHYSICAL REVIEW X
卷 11, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.11.011010

关键词

-

资金

  1. Army Research Office [W911NF1910016]
  2. University of Chicago Materials Research Science and Engineering Center - National Science Foundation [DMR-1420709]
  3. Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF), a node of the National Science Foundations National Nanotechnology Coordinated Infrastructure [ECCS-1542205]
  4. U.S. Department of Defense (DOD) [W911NF1910016] Funding Source: U.S. Department of Defense (DOD)

向作者/读者索取更多资源

The heavy-fluxonium circuit shows promise as a building block for superconducting quantum processors due to its long relaxation and dephasing time at the flux-frustration point. New protocols have been developed for reset, fast coherent control, and readout to enable high-quality operation of the qubit with 14 MHz transition frequency, significantly lower than the ambient thermal energy scale. By utilizing higher levels of the fluxonium and nonadiabatic Landau-Zener transitions, fast and high-fidelity single-qubit gates have been achieved with measurements of qubit coherence and average gate fidelity.
The heavy-fluxonium circuit is a promising building block for superconducting quantum processors due to its long relaxation and dephasing time at the flux-frustration point. However, the suppressed charge matrix elements and low transition frequency make it challenging to perform fast single-qubit gates using standard protocols. We report on new protocols for reset, fast coherent control, and readout that allow high-quality operation of the qubit with a 14 MHz transition frequency, an order of magnitude lower in energy than the ambient thermal energy scale. We utilize higher levels of the fluxonium to read out the qubit state and to initialize the qubit with 97% fidelity corresponding to cooling it to 190 mu K. Instead of using standard microwave pulses, we control the qubit only with fast-flux pulses, generating control fields much larger than the qubit frequency. We develop a universal set of gates based on nonadiabatic Landau-Zener transitions that act in 20-60 ns, less than the single-qubit Larmor period. We measure qubit coherence of T-1, T-2e similar to 300 mu s for a fluxonium in a 2D architecture and realize single-qubit gates with an average gate fidelity of 99.8% as characterized by randomized benchmarking.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据