4.5 Article

Isothermal thermogravimetric method using a fast scanning calorimeter and its application in the isothermal oxidation of nanogram-weight polypropylene

期刊

THERMOCHIMICA ACTA
卷 694, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.tca.2020.178804

关键词

Thermogravimetry; Fast scanning calorimetry; Thermal oxidation; Microplastic; Polypropylene

向作者/读者索取更多资源

Conventional thermogravimetry (TG) is a common method for studying thermal degradation and/or thermal oxidation of polymers. However, the temperature range for isothermal TG studies is limited to regions close to the melting temperature, where thermal degradation and/or thermal oxidation proceed slowly. Higher temperatures cannot be reached because thermal degradation and/or thermal oxidation start upon heating, even using the highest possible heating rate of the conventional TG. The method of fast scanning calorimetry (FSC) to obtain a quasi-real-time isothermal TG curve via a nanogram-weight sample (nano-TG method) was reported. During the 50 cycles of FSC measurements of polypropylene (PP) between room temperature and 300 degrees C, regardless of air flow, all FSC traces were consistent with each other (i.e., thermal oxidation of PP was fully suppressed during the fast scanning). On the other hand, when the sample was annealed for a few seconds at 300 degrees C during the cyclic FSC runs, the apparent heat capacity (which can be converted into relative weight) decreased with increasing total annealing time. The decrease in apparent heat capacity is explained by the progression of thermal oxidation. The nano-TG method was applied to determine the thermal oxidation kinetics of PP using the Avrami-Erofeev model. The non-isothermal TG curve calculated from the kinetic parameters of the nano-TG analysis was in good agreement with the experimental data obtained from the conventional TG measurements for the early stage of weight loss. The present method is applicable for the thermal degradation/oxidation analysis of microplastics in the environment or small impurity analysis of polymers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据