4.7 Article

You must choose, but choose wisely: Model-based approaches for microbial community analysis

期刊

SOIL BIOLOGY & BIOCHEMISTRY
卷 151, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2020.108042

关键词

Latent variable modeling; Joint species distribution modeling; Imperfect detection; Generalized joint attribute model; Microbial ecology

资金

  1. Netherlands Organization for Scientific Research (NWO, Nederlandse Organisatie voor Wetenschappelijk Onderzoek) [870.015.022]
  2. TKI Topsector Tuinbouw & Uitgangsmaterialen [TU17008]

向作者/读者索取更多资源

Soil microbial community data produced by next-generation sequencing platforms has introduced a new era in microbial ecology studies but poses a challenge for data analysis: huge tables with highly sparse data combined with methodological limitations leading to biased analyses. Methodological studies have attempted to improve data interpretation via data transformation and/or rarefaction but usually neglect the assumptions required for an appropriate analysis. Advances in both mathematics and computation are now making model-based approaches feasible, especially latent variable modeling (LVM). LVM is a cornerstone of modern unsupervised learning that permits the evaluation of evolutionary, temporal, and count structure in a unified approach that directly incorporates the data distribution. Despite these advantages, LVM is rarely applied in data analyses of the soil microbiome. Here, we review available methods to handle the characteristics of soil microbial data obtained from next-generation sequencing and advocate for model-based approaches. We focus on the importance of assumption checking for guiding the selection of the most appropriate method of data analysis. We also provide future directions by advocating for the consideration of the dataset produced by sequencing as a representation of microbial detections instead of abundances and for the adoption of hierarchical models to convert these detections into estimated abundances prior to evaluating the microbial community. In summary, we show that model assessment is important for qualifying interpretations and can further guide refinements in subsequent analyses. We have only begun to understand the factors regulating soil microbial communities and the impacts of this microbiota on the environment/ecosystem. Understanding the assumptions of new methods is essential to fully harness their power to test hypotheses using high-throughput sequencing data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据