4.5 Article

Survival, oxidative stability, and surface characteristics of spray dried co-microcapsules containing omega-3 fatty acids and probiotic bacteria

期刊

DRYING TECHNOLOGY
卷 34, 期 16, 页码 1926-1935

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/07373937.2016.1141782

关键词

Co-encapsulation; omega-3; fatty acids; probiotic bacteria; spray drying; surface composition and morphology

资金

  1. Australian Federal Government

向作者/读者索取更多资源

The objective of the study was to determine optimum inlet and outlet air temperatures of spray process for producing co-microcapsules containing omega-3 rich tuna oil and probiotic bacteria L. casei. These co-microcapsules were produced using whey protein isolate and gum Arabic complex coacervates as shell materials. Improved bacterial viability and oxidative stability of omega-3 oil were used as two main criteria of this study. Three sets of inlet (130 degrees C, 150 degrees C, and 170 degrees C) and outlet (55 degrees C, 65 degrees C, and 75 degrees C) air temperatures were used in nine combinations to produce powdered co-microcapsule. The viability of L. casei, oxidative stability of omega-3 oil, surface oil, oil microencapsulation efficiency, moisture content, surface elemental composition and morphology of the powdered samples were measured. There is no statistical difference in oxidative stability at two lower inlet air temperatures (130 degrees C and 150 degrees C). However, there was a significant decrease in oxidative stability when higher inlet temperature (170 degrees C) was used. The viability of L. casei decreased with the increase in the inlet and outlet air temperatures. There was no difference in the surface elemental compositions and surface morphology of powdered co-microcapsules produced under these nine inlet/outlet temperature combinations. Of the range of conditions tested the co-microcapsules produced at inlet-outlet temperature 130-65 degrees C showed the highest bacterial viability and oxidative stability of omega-3 and having the moisture content of 4.93 +/- 0.05% (w/w). This research shows that powdered co-microcapsules of probiotic bacteria and omega-3 fatty acids with high survival of the former and high stability against oxidation can be produced through spray drying.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据