4.4 Article

First coupled GENE-XGC microturbulence simulations

期刊

PHYSICS OF PLASMAS
卷 28, 期 1, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0026661

关键词

-

资金

  1. Exascale Computing Project [17-SC-20-SC]

向作者/读者索取更多资源

The two gyrokinetic turbulence codes GENE and XGC have been successfully coupled by exchanging three-dimensional charge density data, overcoming challenges from different numerical methods and time integrators. The first coupled simulations successfully reproduced reference results, confirming the validity of the code coupling approach.
Covering the core and the edge region of a tokamak, respectively, the two gyrokinetic turbulence codes Gyrokinetic Electromagnetic Numerical Experiment (GENE) and X-point Gyrokinetic Code (XGC) have been successfully coupled by exchanging three-dimensional charge density data needed to solve the gyrokinetic Poisson equation over the entire spatial domain. Certain challenges for the coupling procedure arise from the fact that the two codes employ completely different numerical methods. This includes, in particular, the necessity to introduce mapping procedures for the transfer of data between the unstructured triangular mesh of XGC and the logically rectangular grid (in a combination of real and Fourier space) used by GENE. Constraints on the coupling scheme are also imposed by the use of different time integrators. First, coupled simulations are presented. We have considered collisionless ion temperature gradient turbulence, in both circular and fully shaped plasmas. Coupled simulations successfully reproduce both GENE and XGC reference results, confirming the validity of the code coupling approach toward a whole device model. Many lessons learned in the present context, in particular, the need for a coupling procedure as flexible as possible, should be valuable to our and other efforts to couple different kinds of codes in pursuit of a more comprehensive description of complex real-world systems and will drive our further developments of a whole device model for fusion plasmas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据