4.7 Article

Universal spatio-topological control of crystallization in sessile droplets using non-intrusive vapor mediation

期刊

PHYSICS OF FLUIDS
卷 33, 期 1, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/5.0037120

关键词

-

资金

  1. Ministry of Education, Government of India
  2. DRDO Chair Professorship

向作者/读者索取更多资源

This study presents a mechanism of asymmetric solvent depletion using vapor-mediated interaction to regulate the spatial location of crystal precipitation, leading to enhanced selective deposition of crystals.
The present work showcases a mechanism of asymmetric solvent depletion using vapor-mediated interaction that can non-intrusively regulate the site of crystal precipitation. In general, the flow pattern inside a drying sessile saline droplet leads to circumferential deposition of salt crystals at the end of evaporation. Instead, we show that our proposed approach can manipulate the spatial location of crystal precipitation. The introduction of a pendant ethanol droplet near the sessile saline droplet's vicinity creates an asymmetric ethanol vapor gradient around the sessile drop. The differential adsorption of ethanol vapor on the surface of the saline droplet gives rise to a spatial surface tension gradient. This, in turn, enhances the internal convection [similar to O (10(2)-10(3))] within the saline droplet. The vigorous and non-uniform flow promotes targeted contact line depinning, ensuring preferential segregation of the salt crystals. Using this methodology, we can inhibit crystal formation at selected locations and favorably control its deposition in definite regions. The interplay of flow hydrodynamics and the associated contact line motion governs this phenomenon marked by the inception and growth of crystals at a preferential site. The universal character of such a phenomenon is verified for a variety of salt solutions on the glass substrate. Tweaking of contact line motion using vapor mediation can be used as a strategic tool for controlling the salt crystallization sites for various potential applications starting from water purification to portable diagnostics, fouling, and scaling, particularly in cases that require the separation of unwarranted solutes from solvents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据