4.5 Review

Structured form of DHA prevents neurodegenerative disorders: A better insight into the pathophysiology and the mechanism of DHA transport to the brain

期刊

NUTRITION RESEARCH
卷 85, 期 -, 页码 119-134

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.nutres.2020.12.003

关键词

DHA; brain; triacylglycerol; phospholipids; beta-amyloid

向作者/读者索取更多资源

Docosahexaenoic acid (DHA) is crucial for brain function and cognitive development, and deficiency can lead to neurodegenerative disorders. Recent studies suggest that lysophosphatidylcholine (lysoPC) form of DHA is better absorbed by the brain, and supplementation with this form can decrease the risk of such disorders.
Docosahexaenoic acid (DHA) is one of the most important fatty acids that plays a critical role in maintaining proper brain function and cognitive development. Deficiency of DHA leads to several neurodegenerative disorders and, therefore, dietary supplementations of these fatty acids are essential to maintain cognitive health. However, the complete picture of how DHA is incorporated into the brain is yet to be explored. In general, the de novo synthesis of DHA is poor, and targeting the brain with specific phospholipid carriers provides novel insights into the process of reduction of disease progression. Recent studies have suggested that compared to triacylglycerol form of DHA, esterified form of DHA (i.e., lysophosphatidylcholine [lysoPC]) is better incorporated into the brain. Free DHA is transported across the outer membrane leaflet of the blood-brain barrier via APOE4 receptors, whereas DHA-lysoPC is transported across the inner membrane leaflet of the blood-brain barrier via a specific protein called Mfsd2a. Dietary supplementation of this lysoPC specific form of DHA is a novel therapy and is used to decrease the risk of various neurodegenerative disorders. Currently, structured glycerides of DHA - novel nutraceutical agents - are being widely used for the prevention and treatment of various neurological diseases. However, it is important to fully understand their metabolic regulation and mechanism of transportation to the brain. This article comprehensively reviews various studies that have evaluated the bioavailability of DHA, mechanisms of DHA transport, and role of DHA in preventing neu-rodegenerative disorders, which provides better insight into the pathophysiology of these disorders and use of structured DHA in improving neurological health. (c) 2020 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据