4.6 Article

Effects of Microstructural Morphology on Formability, Strain Localization, and Damage of Ferrite-Pearlite Steels: Experimental and Micromechanical Approaches

向作者/读者索取更多资源

This paper utilized finite element simulations and experimental validations to predict the deformation behavior and formability of ferrite-pearlite steels at room temperature, demonstrating that microstructural features play a crucial role in the strain partitioning, strain localization, and formability of ferritic-pearlitic steels.
This paper attempts to predict how the microstructural features and mechanical properties of the individual constituents affect the deformation behavior and formability of ferrite-pearlite steels under quasi-static loading at room temperature. For this purpose, finite element simulations using representative volume elements (RVEs) based on the real microstructures were implemented to model the flow behavior of the ferrite-pearlite steels with various microstructural morphologies (non-banded and banded). The homogenized flow curves obtained from the RVEs subjected to periodic boundary conditions together with displacement boundary conditions were validated with the experimental results of the uniaxial tensile tests. Then, the initial microstructural inhomogeneity and Johnson-Cook damage criteria were employed for both non-banded and banded RVEs to estimate the onset of plastic instability under different loading paths ranging from uniaxial tension to equi-biaxial tension. Finally, the forming limit diagrams of both ferritic-pearlitic microstructures were predicted, which show a good agreement with the experimental results of the Nakazima stretch-forming tests (less than 13 pct error). It implies that the initial microstructural inhomogeneity criterion adequately enables to predict the plastic instability in the ferritic-pearlitic steel sheets without using any damage or failure criterion. The most commonly observed damage mechanism is the severe plastic deformation of the ferrite grains near the pearlite colonies due to the strength contrast between ferrite and pearlite. Another significant finding is that the microstructural morphology has a crucial influence on the strain partitioning, strain localization, and formability of the ferritic-pearlitic steels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据