4.6 Article

GEPSO: A new generalized particle swarm optimization algorithm

期刊

MATHEMATICS AND COMPUTERS IN SIMULATION
卷 179, 期 -, 页码 194-212

出版社

ELSEVIER
DOI: 10.1016/j.matcom.2020.08.013

关键词

Heuristic algorithms; Particle Swarm Optimization (PSO); Parameter tuning; Swarm intelligence

向作者/读者索取更多资源

The Particle Swarm Optimization (PSO) algorithm, a nature-inspired meta-heuristic, has evolved into various variants due to its flexibility in parameters and concepts. The Generalized Particle Swarm Optimization (GEPSO) algorithm enriches the original PSO by incorporating new terms and dynamic inertia weight updates, leading to improved performance in continuous space optimization.
Particle Swarm Optimization (PSO) algorithm is a nature-inspired meta-heuristic that has been utilized as a powerful optimization tool in a wide range of applications since its inception in 1995. Due to the flexibility of its parameters and concepts, PSO has appeared in many variants, probably more than any other meta-heuristic algorithm. This paper introduces the Generalized Particle Swarm Optimization (GEPSO) algorithm as a new version of the PSO algorithm for continuous space optimization, which enriches the original PSO by incorporating two new terms into the velocity updating equation. These terms aim to deepen the interrelations of particles and their knowledge sharing, increase variety in the swarm, and provide a better search in unexplored areas of the search space. Moreover, a novel procedure is utilized for dynamic updating of the particles' inertia weights, which controls the convergence of the swarm towards a solution. Also, since parameters of heuristic and meta-heuristic algorithms have a significant influence on their performance, a comprehensive guideline for parameter tuning of the GEPSO is developed. The computational results of solving numerous well-known benchmark functions by the GEPSO, original PSO, Repulsive PSO (REPSO), PSO with Passive Congregation (PSOPC), Negative PSO (NPSO), Deterministic PSO (DPSO), and Line Search-Based Derivative-Free PSO (LS-DF-PSO) approaches showed that the GEPSO outperformed the compared methods in terms of mean and standard deviation of fitness function values and runtimes. (C) 2020 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据