4.5 Article

Deblur and deep depth from single defocus image

期刊

MACHINE VISION AND APPLICATIONS
卷 32, 期 1, 页码 -

出版社

SPRINGER
DOI: 10.1007/s00138-020-01162-6

关键词

Depth estimation; Depth map; Blur removal; Deblurring; Deconvolution; Convolutional neural network (CNN); Defocus; Out of focus

向作者/读者索取更多资源

The paper introduces a method for estimating depth and removing blur from a single out-of-focus image using deep convolutional neural networks, which significantly improves depth accuracy and performance. Experimental results on benchmark datasets show superior performance compared to state-of-the-art methods in depth estimation and blur removal tasks.
In this paper, we tackle depth estimation and blur removal from a single out-of-focus image. Previously, depth is estimated, and blurred is removed using multiple images; for example, from multiview or stereo scenes, but doing so with a single image is challenging. Earlier works of monocular images for depth estimated and deblurring either exploited geometric characteristics or priors using hand-crafted features. Lately, there is enough evidence that deep convolutional neural networks (CNN) significantly improved numerous vision applications; hence, in this article, we present a depth estimation method that leverages rich representations learned from cascaded convolutional and fully connected neural networks operating on a patch-pooled set of feature maps. Furthermore, from this depth, we computationally reconstruct an all-focus image, i.e., removing the blur and achieve synthetic re-focusing, all from a single image. Our method is fast, and it substantially improves depth accuracy over the state-of-the-art alternatives. Our proposed depth estimation approach can be utilized for everyday scenes without any geometric priors or extra information. Furthermore, our experiments on two benchmark datasets consist images of indoor and outdoor scenes, i.e., Make3D and NYU-v2 demonstrate superior performance in comparison with other available depth estimation state-of-the-art methods by reducing the root-mean-squared error by 57% and 46%, and state-of-the-art blur removal methods by 0.36 dB and 0.72 dB in PSNR, respectively. This improvement in-depth estimation and deblurring is further demonstrated by the superior performance using real defocus images against images captured with a prototype lens.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据