4.6 Article

Stability of Lines with Zero Receding Contact Angle Produced by Inkjet Printing at Small Drop Volume

期刊

LANGMUIR
卷 37, 期 1, 页码 26-34

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.0c01928

关键词

-

资金

  1. Engineering and Physical Sciences Research Council (EPSRC) [EP/L012022/1]
  2. Henry Royce Institute for Advanced Materials [EP/R00661X/1, EP/S019367/1, EP/P025021/1, EP/P025498/1]
  3. China Scholarship Council
  4. University of Manchester
  5. EPSRC [EP/P025021/1, EP/S019367/1, EP/L012022/1] Funding Source: UKRI

向作者/读者索取更多资源

This experimental study investigates the maximum and minimum bounding drop spacing for parallel liquid lines formed by inkjet printing, using different drop volumes, substrate characteristics, and printing speeds. The results validate existing models but also reveal an influence of printing speed on predicting stable line width that was not captured by the model. Additionally, a different bulging mechanism is observed under certain conditions, possibly triggered by imperfections on the substrate.
We present an experimental study of the maximum and minimum bounding drop spacing for a parallel-sided liquid line produced by inkjet printing with drop volumes of 1.5 and 8.5 pL, on substrates with advancing contact angles of 46 and 54 degrees, and zero receding contact angle. The results are used to validate models of the limiting bounds for the formation of stable parallel-sided lines as a function of drop spacing and transverse printing speed. The model for the maximum drop spacing bound (minimum line width) shows a good agreement with our results, but, when used to predict the stable line width, there is an influence of printing speed not captured by the model. This is probably because of a coupling between printed drop volume and ejection velocity outside the scope of the model. The minimum drop spacing bound (maximum stable line width) is limited by a bulging instability, and our results agree with the existing model, except for printing with the largest drop volumes at low temperature. It is shown that under these conditions, there is a different mechanism for bulging that occurs after printing over a period of minutes, if the liquid bead is present on the surface for a significant period of time before drying. Our results suggest that this mechanism is possibly triggered by imperfections on the substrate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据