4.8 Article

Selective N1/N4 1,4-Cycloaddition of 1,2,4,5-Tetrazines Enabled by Solvent Hydrogen Bonding

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 142, 期 49, 页码 20778-20787

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.0c09775

关键词

-

资金

  1. National Institutes of Health [CA042056]
  2. JITRI Fellowship

向作者/读者索取更多资源

An unprecedented 1,4-cycloaddition (vs 3,6-cycloaddition) of 1,2,4,5-tetrazines is described with preformed or in situ generated aryl-conjugated enamines promoted by the solvent hydrogen bonding of hexafluoroisopropanol (HFIP) that is conducted under mild reaction conditions (0.1 M HFIP, 25 degrees C, 12 h). The reaction constitutes a formal [4 + 2] cycloaddition across the two nitrogen atoms (N1/N4) of the 1,2,4,5-tetrazine followed by a formal retro [4 + 2] cycloaddition loss of a nitrile and aromatization to generate a 1,2,4-triazine derivative. The factors that impact the remarkable change in the reaction mode, optimization of reaction parameters, the scope and simplification of its implementation through in situ enamine generation from aldehydes and ketones, the reaction scope for 3,6-bis(thiomethyl)-1,2,4,5-tetrazine, a survey of participating 1,2,4,5-tetrazines, and key mechanistic insights into this reaction are detailed. Given its simplicity and breath, the study establishes a novel method for the simple and efficient one-step synthesis of 1,2,4-triazines under mild conditions from readily accessible starting materials. Whereas alternative protic solvents (e.g., MeOH vs HFIP) provide products of the conventional 3,6-cycoladdition, the enhanced hydrogen bonding capability of HFIP uniquely results in promotion of the unprecedented formal 1,4-cycloaddition. As such, the studies represent an example of not just an enhancement in the rate or efficiency of a heterocyclic azadiene cycloaddition by hydrogen bonding catalysis but also the first to alter the mode (N1/N4 vs C3/C6) of cycloaddition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据