4.7 Article

Tensile properties of powder-metallurgical-processed tungsten alloys after neutron irradiation near recrystallization temperatures

期刊

JOURNAL OF NUCLEAR MATERIALS
卷 542, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jnucmat.2020.152505

关键词

Polycrystalline tungsten; Tensile properties; Recrystallization; Neutron irradiation; Thermal neutron shield

资金

  1. U.S. Department of Energy, Office of Fusion Energy Sciences [DE-AC05-00OR22725]
  2. UT-Battelle, LLC
  3. JSPS KAKENHI [17H01364]
  4. Grants-in-Aid for Scientific Research [17H01364] Funding Source: KAKEN

向作者/读者索取更多资源

The tensile properties of powder-metallurgical-processed Pure W, K-doped W, W-3%Re, and K-doped W-3%Re were examined after neutron irradiation up to 0.7 dpa at 910-1020 degrees C with a thermal neutron shield in the High Flux Isotope Reactor (HFIR). After irradiation, recrystallized Pure W (R) exhibited a brittle fracture mode, while recrystallized K-doped W-3%Re (R) exhibited a ductile fracture mode at 500 degrees C. K-doped W-3%Re (R) has fine grains, and hence, contains a considerable number of grain boundaries that act as sinks for irradiation defects. Solid solute Re in the W matrix could improve not only the mechanical properties of W, but also its resistance to neutron irradiation. At 500 degrees C, the ductility of K-doped W-3%Re after irradiation was significantly higher than that of Pure W. The irradiation at similar to 1000 degrees C did not induce hardening of stress-relieved (SR) W materials, but SR W materials tended to exhibit a decrease in the ultimate tensile strength (UTS) and an increase in total elongation (TE). The softening due to the recovery and recrystallization of SR W materials and the hardening due to the formation of irradiation defect clusters were balanced during irradiation at similar to 1000 degrees C, and ductility was exhibited without an increase in strength. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Materials Science, Multidisciplinary

Suppression of vacancy formation and hydrogen isotope retention in irradiated tungsten by addition of chromium

Jing Wang, Yuji Hatano, Takeshi Toyama, Tomoaki Suzudo, Tatsuya Hinoki, Vladimir Kh. Alimov, Thomas Schwarz-Selinger

Summary: The addition of 0.3 at.% Cr in the tungsten matrix leads to a significant reduction in the retention of hydrogen isotopes, especially at high temperatures. This is attributed to the suppression of vacancy-type defects formation by the addition of chromium.

JOURNAL OF NUCLEAR MATERIALS (2022)

Article Nuclear Science & Technology

Effect of tungsten matrix on the mechanical property of SiC fiber reinforced tungsten composites with foils fabricated at 1700 °C

Yina Du, Tatsuya Hinoki

Summary: SiC fiber reinforced tungsten composites were prepared by hot press process, and the effect of tungsten foil thickness on the properties of the composites was investigated. The results showed that the composites with a thickness of 0.08 mm exhibited better mechanical properties and higher pseudo ductility. In addition, recrystallization of the tungsten foils occurred after sintering, and the presence of tungsten was confirmed by XRD.

NUCLEAR MATERIALS AND ENERGY (2022)

Article Materials Science, Multidisciplinary

Development of Liquid Phase Sintering Silicon Carbide Composites for Light Water Reactor

Tatsuya Hinoki, Fumihisa Kano, Sosuke Kondo, Yoshiyuki Kawaharada, Yumiko Tsuchiya, Moonhee Lee, Hiroyuki Sakai

Summary: This study aims to understand the high-temperature water corrosion and steam oxidation behavior of liquid phase sintering silicon carbide and develop stable liquid phase sintering silicon carbide composites. The results show that the formation of silicate and Yttrium Aluminum Garnet improves the corrosion resistance and thermal shock resistance of the materials. The modified particle-dispersion liquid phase sintering silicon carbide composites are promising materials for light water reactors.

COATINGS (2022)

Article Materials Science, Multidisciplinary

Assessment of the Potential Diffusion Barriers between Tungsten and Silicon Carbide for Nuclear Fusion Application

Yina Du, Baopu Wang, Yansong Zhong, Tatsuya Hinoki

Summary: In this work, various ceramic coatings were evaluated for their ability to suppress the reaction between tungsten (W) and silicon carbide (SiC). The multi-dipped Er2O3 coating and the sputtered nitrides showed good performance compared to other coatings. The study provides suggestions for choosing an appropriate interface material between SiC and W.

COATINGS (2022)

Article Materials Science, Multidisciplinary

Microstructure deformation and near-pore environment of resolidified tungsten in high heat flux conditions

Minsuk Seo, Ke Wang, John R. Echols, A. Leigh Winfrey

Summary: Tungsten undergoes residual helium changes and microstructure deformation in high heat flux and helium plasma environment. The absence of helium in the resolidified tungsten matrix and the presence of defects, reduced grain size, and microstructure deformation affect hardening.

JOURNAL OF NUCLEAR MATERIALS (2022)

Article Materials Science, Multidisciplinary

Tungsten-tantalum alloys for fusion reactor applications

Shuhei Nogami, Itsuki Ozawa, Daisuke Asami, Naoya Matsuta, Seiji Nakabayashi, Siegfried Baumgaertner, Philipp Lied, Kiyohiro Yabuuchi, Takeshi Miyazawa, Yuta Kikuchi, Marius Wirtz, Michael Rieth, Akira Hasegawa

Summary: The addition of tantalum to tungsten-tantalum alloys improves their mechanical properties, resistance against recrystallization, and resistance to high heat flux exposure. This makes them a promising material for fusion reactor applications.

JOURNAL OF NUCLEAR MATERIALS (2022)

Article Materials Science, Multidisciplinary

Radiation Effect in Ti-Cr Multilayer-Coated Silicon Carbide under Silicon Ion Irradiation up to 3 dpa

Ryo Ishibashi, Yasunori Hayashi, Huang Bo, Takao Kondo, Tatsuya Hinoki

Summary: The study demonstrates that using coating technology can effectively reduce hydrothermal corrosion of SiC fuel cladding during normal operation, and after irradiation, the adhesion strength between the coating and the SiC substrate is good without delamination and cracking.

COATINGS (2022)

Article Materials Science, Multidisciplinary

Impact of Low-Temperature Neutron Irradiation on Tensile Behavior of Base Metal and Electron-Beam Welded 316L Stainless Steel

Chinthaka M. Silva, Keith J. Leonard, Lauren M. Garrison, Chris D. Bryan, Kiel S. Holliday

Summary: The study shows that low-temperature neutron irradiation has a significant impact on the tensile behavior of 316L stainless steel. Irradiated specimens, free of defects, exhibit reduced tensile ductility and increased radiation-induced hardening. Both base metal and e-beam welded specimens exhibit similar fracture surfaces indicative of ductile rupture after low-temperature neutron irradiation.

METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE (2022)

Review Nuclear Science & Technology

Review of Recent Progress in Plasma-Facing Material Joints and Composites in the FRONTIER US-Japan Collaboration

L. M. Garrison, Y. Katoh, T. Hinoki, N. Hashimoto, J. R. Echols, J. W. Geringer, N. C. Reid, J. P. Allain, B. Cheng, D. Dorow-Gerspach, V. Ganesh, H. Gietl, S. A. Humphry-Baker, E. Lang, I. McCue, J. Riesch, L. L. Snead, G. D. W. Smith, J. R. Trelewicz, Y. Yang, S. J. Zinkle

Summary: The plasma-facing components (PFCs) of future fusion reactors require intricate structures and multiple materials. The behavior of internal solid interfaces in PFCs under neutron irradiation is being explored through the FRONTIER U.S.-Japan collaboration. Promising materials in various areas are presented, including copper alloys, tungsten-copper composites, tungsten-steel composites, additively manufactured tungsten, particle-reinforced tungsten, and tungsten and SiC fiber composites.

FUSION SCIENCE AND TECHNOLOGY (2023)

Article Materials Science, Ceramics

Effect of BN nanoparticle content in SiC matrix on microstructure and mechanical properties of SiC/SiC composites

Kazuya Shimoda, Tatsuya Hinoki

Summary: BN-nanoparticle-containing SiC-matrix-based composites without a fiber/matrix interface were fabricated by SPS. The mechanical properties of the composites were investigated and the composites with a BN nanoparticle content of 50 vol.% showed quasiductile fracture behavior. The composites also exhibited high strength and bending, proportional limit stress, and ultimate tensile strength values under ambient conditions.

INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY (2023)

Article Materials Science, Multidisciplinary

Microstructural evolution in tungsten binary alloys under proton and self-ion irradiations at 800 °C

Takeshi Miyazawa, Yuta Kikuchi, Masami Ando, Ju-Hyeon Yu, Kiyohiro Yabuuchi, Takashi Nozawa, Hiroyasu Tanigawa, Shuhei Nogami, Akira Hasegawa

Summary: This study explores the effects of alloying elements (Re and Ta) on the microstructural evolution of recrystallized tungsten (W) under proton and self-ion irradiations. It is found that the addition of Re and Ta suppresses the formation of voids in W. The presence of Re inhibits the mobility of small dislocation loops and SIA clusters, while Ta inhibits the mobility of SIA clusters. In self-ion irradiation, solute Re suppresses the raft formation and void formation. The main reason for the irradiation hardening of W-3%Re is the presence of voids and dislocation loops.

JOURNAL OF NUCLEAR MATERIALS (2023)

Article Materials Science, Multidisciplinary

Irradiation response of liquid-phase sintered SiC assisted with Y 2 O 3-Al 2 O 3 sintering additive at 300 & DEG;C up to 100 dpa

Bo Huang, Meng She, Lin Feng, Yansong Zhong, Kanjiro Kawasaki, Fujio Shinoda, Tatsuya Hinoki

Summary: The effect of Y2O3-Al2O3 sintering additive on the irradiation response of LPS-SiC materials was investigated. CVD-SiC and LPS-SiC specimens were subjected to ion irradiation and compared. The volumetric swelling of LPS-SiC was attributed to the sintering additive YAG.

JOURNAL OF NUCLEAR MATERIALS (2023)

Article Materials Science, Multidisciplinary

Irradiation effects on binary tungsten alloys at elevated temperatures: Vacancy cluster formation, precipitation of alloying elements and irradiation hardening

Jing Wang, Yuji Hatano, Takeshi Toyama, Tatsuya Hinoki, Kiyohiro Yabuuchi, Yi-fan Zhang, Bing Ma, Alexander V. Spitsyn, Nikolay P. Bobyr, Koji Inoue, Yasuyoshi Nagai

Summary: This study systematically investigates the irradiation responses of binary W alloys, focusing on the binding energy of an alloying element with a W self-interstitial atom (W-SIA). Plates of W, W-0.3 at.% Cr, W-5 at.% Re, W-2.5 at.% Mo, and W-5 at.% Ta alloys were irradiated, and the formation of vacancy-type defects, the precipitation of alloying elements, and the changes in hardness were studied. It was found that the addition of Cr and Re effectively suppresses the formation of vacancy-type defects, while Ta and Mo have no significant suppression effect. Irradiation hardening was observed in all materials, but its degree was smaller in the W-5 at.% Re alloy.

MATERIALS & DESIGN (2023)

Article Nuclear Science & Technology

Creep deformation and rupture behavior of 9Cr-ODS steel cladding tube at high temperatures from 700°C to 1000°C

Yuya Imagawa, Ryuta Hashidate, Takeshi Miyazawa, Takashi Onizawa, Satoshi Ohtsuka, Yasuhide Yano, Takashi Tanno, Takeji Kaito, Masato Ohnuma, Masatoshi Mitsuhara, Takeshi Toyama

Summary: This study conducted creep tests on 9Cr-ODS steel and found that a single equation can express creep rupture strength from 700°C to 1000°C. The validation of the ring creep test method was also conducted.

JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY (2023)

Article Materials Science, Multidisciplinary

H dissolution and desorption near He-V complexes in W surfaces with different orientations

Liuming Wei, Jingwen Li, Yonggang Li, Qirong Zheng, Fan Cheng, Chuanguo Zhang, Jingyu Li, Gaofeng Zhao, Zhi Zeng

Summary: This study investigates the influence of He-V complexes on H behaviors on different W surfaces using DFT calculations. The results show that H dissolution is most difficult but H trapping is easiest on the W (110) surface, while the opposite is true on the W (111) surface. Moreover, the presence of He-V complexes increases the difficulty of H diffusion from bulk to surface and desorption.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

Effect of deposition parameters on characteristics and oxidation behavior of magnetron sputtered Cr coatings

Yan Meng, Song Zeng, Chen Chen, Chaowen Zhu, Huahai Shen, Xiaosong Zhou, Xiaochun Han

Summary: The characteristics of magnetron sputtered Cr coatings vary with different temperature, bias voltage, and pressure. Coatings with random orientation, good crystallinity, and small grain size exhibit favorable oxidation behavior, while coatings with strong (200) texture, poor crystallinity, and large grains have many intrinsic defects that are detrimental to the protection property of the Cr coatings.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

Automated analysis of grain morphology in TEM images using convolutional neural network with CHAC algorithm

Xinyuan Xu, Zefeng Yu, Wei-Ying Chen, Aiping Chen, Arthur Motta, Xing Wang

Summary: This study presents an automated approach for characterizing grain morphology in TEM images recorded during ion irradiation. By combining a machine learning model and a computer vision algorithm, comparable results to human analysis can be achieved with significantly reduced analysis time. Researchers can train their own models following the procedures described in this study to automate grain morphology analysis of their own TEM images.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

Model development for oxidation and degradation behavior of accident tolerant Cr coating on Zr alloy cladding under high temperature steam atmosphere

Shihao Wu, Dong Wang, Yapei Zhang, Koji Okamoto, Marco Pellegrini, Wenxi Tian, Suizheng Qiu, G. H. Su

Summary: The oxidation and degradation mechanisms of Cr coating on Zr alloy cladding under high temperature steam atmosphere are summarized, and a mathematical analysis model is established to predict the changes in coating thickness. The model is applied in the analysis of structure evolution under different conditions.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

Numerical and experimental development of cupronickel filler brazed joints for divertor and first wall components in DEMO fusion reactor

V. Diaz-Mena, J. de Prado, M. Roldan, I. Izaguirre, M. Sanchez, M. Rieth, A. Urena

Summary: The brazeability of a cupronickel alloy was evaluated as a filler alloy for high-temperature joining of tungsten to steel. The study investigated the brazing conditions and the impact of the selected filler on the joint quality using numerical software. The results showed different metallurgical interactions and diffusion phenomena between the filler alloy and the base materials at different temperatures. The study emphasized the importance of selecting a suitable filler to mitigate residual stresses in the joints.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

Defect-specific strength factors and superposition model for predicting strengthening of ion irradiated Fe18Cr alloy

Pengcheng Zhu, Yajie Zhao, Yan-Ru Lin, Jean Henry, Steven J. Zinkle

Summary: This study investigates the effect of heavy-ion irradiation on radiation hardening in high-purity binary alloy Fe18Cr. Nanoindentation testing and high-quality TEM imaging were conducted to extract hardness and microstructure information. The strength factor was accurately calculated based on the detailed TEM characterization of irradiated microstructures, and a refined hardening superposition method was applied to quantify the mechanical properties of ion-irradiated materials.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

Synthesis and characterization of sodium-aluminophosphate based glass-ceramics containing NZP phase for HLW immobilization

Bin Wu, Haixia Ning, Hanzhen Zhu, Jianjun Chen, Kang Wang, Daiyu Zhang, Fu Wang, Qilong Liao

Summary: This study discusses the effects of ZrO2 and B2O3 on the phase composition and properties of SAP-based glass-ceramics. The results show that ZrO2 addition improves the formation of NZP phase while restricting the crystallization of AlPO4 phases. The correct ratios of ZrO2 and B2O3 allow only the formation of NZP phase within the SAP glass.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

High temperature oxidation of cold spray Cr-coated accident tolerant zirconium-alloy cladding with Nb diffusion barrier layer

Hwasung Yeom, Greg Johnson, Benjamin Maier, Tyler Dabney, Kumar Sridharan

Summary: Cr-Nb bilayer coatings were developed using cold spray deposition to improve the limiting operational temperature of Cr-coated Zr-alloy system. The coatings exhibited outstanding oxidation resistance at high temperatures and formed continuous intermetallic compound layers at the interfaces.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

Irradiation creep measurement and microstructural analysis of chromium nitride-coated zirconium alloy using pressurized tubes

Padhraic L. Mulligan, Andrew T. Nelson, Chad M. Parish, Patrick A. Champlin, Xiang Chen, Daniel Morrall, Jason M. Harp

Summary: Environmental barrier coatings are being developed to reduce oxidation and embrittlement in Zr-based materials. Chromium nitride is a candidate for this application, but understanding its impact on irradiation-induced creep and microstructure is critical.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

Determination of impurity distribution in IG-11/110 nuclear graphite using TOF-SIMS

Dexuan Yan, Xinlei Cao, Ke Shen

Summary: This study investigated the purification mechanism of polycrystalline graphite by comparing IG-11 graphite with IG-110 nuclear grade graphite. The analysis revealed that metallic impurities in IG-11 were primarily segregated within graphite porosities, while IG-110 demonstrated a significant reduction in impurities. This research contributes to the development of innovative graphite purification techniques for greater purity and stronger oxidation resistance.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

Study of multi-pebble oxidation process in high-temperature gas-cooled reactor

Wei Xu, Wei Peng, Lei Shi, Qi Sun

Summary: This paper investigates the oxidation and shape evolution of matrix graphite in high temperature gas-cooled reactors during air-ingress accidents. A reaction kinetics model is established and computational fluid dynamics with a dynamic mesh method is used to simulate the oxidation process. The results show that the geometric shape of graphite changes significantly with increasing flow rate, and the graphite pebbles tend to form a structure with a narrow front and wide tail.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

Synthesis and characterization of super occluded LiCl-KCl in zeolite-4A as a chloride salt waste form intermediate

Allison Harward, Casey Elliott, Michael Shaltry, Krista Carlson, Tae-Sic Yoo, Guy Fredrickson, Michael Patterson, Michael F. Simpson

Summary: This paper investigates the hygroscopic properties of eutectic LiCl-KCl absorbed into zeolite-4A. The study finds that water absorption and corrosion worsen with increasing salt loading. It also suggests that the salt can be stored in a non-inert atmosphere for a certain period of time.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

Hermeticity of SiC/SiC composite and monolithic SiC tubes irradiated under radial high-heat flux

Takaaki Koyanagi, Xunxiang Hu, Christian M. Petrie, Gyanender Singh, Caen Ang, Christian P. Deck, Weon-Ju Kim, Daejong Kim, James Braun, Yutai Katoh

Summary: This study provides critical experimental data on the effects of irradiation on the hermeticity of SiC composite cladding, finding that irradiation can cause a decrease in hermeticity and cracking, and coating the outer surface can mitigate the cracking issue.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

Theoretical estimation of multiple hydrogen isotope content in metal layers slowly co-deposited from plasmas

S. Krat, A. Prishvitsyn, Yu. Gasparyan

Summary: This study proposes a probabilistic and diffusion-based model to describe the co-deposition of multiple hydrogen isotopes with slowly grown metal layers. The model calculates the relative concentrations of different hydrogen isotopes in the co-deposited metal layers. It is found that if hydrogen isotopes have different detrapping energies, only the isotope with the highest detrapping energy shows a monotonic decrease in concentration with deposition temperature. Furthermore, the study evaluates the uncertainty of tritium concentration in the co-deposited layer based on the uncertainty in detrapping energy of tritium and deuterium, predicting a >10% tritium concentration uncertainty for a 0.01 eV difference.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

Computational study of thermophysical properties of cerium doped UO2: Effect of oxidation states

Tijo Vazhappilly, Arup Kumar Pathak

Summary: This study investigates the effect of Ce atom substitution in UO2 on its thermophysical properties using density functional theory. The results show that the Ce substitution levels and the oxidation state of Ce/U atoms strongly influence the band structure and specific heat capacity of the UO2 lattice. These findings provide important insights into the fuel properties of UO2 under reactor conditions.

JOURNAL OF NUCLEAR MATERIALS (2024)