4.5 Article

Antimicrobial Cellulose Nanocomposite Films with In Situ Generations of Bimetallic (Ag and Cu) Nanoparticles Using Vitex negundo Leaves Extract

出版社

SPRINGER
DOI: 10.1007/s10904-020-01819-9

关键词

Bimetallic nanoparticles; Nanocomposites; Cellulose; Vitex negundo (Vavili); Antibacterial properties

资金

  1. UGC, Govt of India
  2. Central Facilities for Research and Development (CFRD), Osmania University, Hyderabad

向作者/读者索取更多资源

Antimicrobial cellulose nanocomposite films with in situ synthesized bimetallic nanoparticles were successfully developed through a solution casting method and swelling process. The resulting nanocomposite films exhibit good antibacterial activities and show potential for applications in food, medical, and disinfection packaging materials.
Antimicrobial cellulose nanocomposite films with in situ synthesized bimetallic nanoparticles were developed by a three-step process. These antimicrobial cellulose nanocomposite films with in situ synthesized bimetallic, silver (Ag) and copper (Cu) nanoparticles (NPs) through the apozem of medicinal important plant Vitex negundo (Vavili) leaves, and which is acts as a bio-reductant and stabilizing agent. Through a three-step process, the cellulose films were prepared via a solution casting method and loaded with the apozem of V. negundo (Vavili) leaves via the swelling process. The resulted nanocomposite films were characterized by XRD, UV, FTIR, SEM/EDAX, TGA, UTM and antibacterial measurements. The XRD studies confirm that the presence of AgNPs and CuNPs in the cellulose matrix. The formation Ag/Cu, bimetallic nanoparticles were observed by the change of the color of the cellulose films. The presence of UV absorption peaks at around similar to 415 (Ag) and similar to 570 nm (Cu) confirms the formation of bimetallic cellulose nanocomposite films. The SEM and EDAX spectrum confirmed the presence of Ag, Cu, and Ag/Cu elements. The average size of the Ag-Cu, Ag, and Cu nanoparticles generated were similar to 60, similar to 67, and similar to 74 nm, respectively. The UTM and TGA studies revealed that bimetallic nanocomposites have high strength and stability than monometallic nanocomposite films. The nanocomposites have shown good antibacterial activities towards gram-positive and gram-negative bacteria. These cellulose nanocomposite films stand as good candidature for food, medical, and disinfection packaging materials. Graphic

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据